1. D. M. Sheen, D. L. McMakin, T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection", IEEE Trans. Microw. Theory Techn., vol. 49, pp. 1581-1592, Sep. 2001. 2. H. Zamani, M. Fakharzadeh, "1.5-D sparse array for millimeter-wave imaging based on compressive sensing techniques", IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 2008-2015, Apr. 2018. 3. Z. Briqech, A. R. Sebak, "Millimeter-wave imaging system using a 60 GHz dual-polarized AFTSA-SC probe", Proc. 33rd Nat. Radio Sci. Conf. (NRSC), pp. 325-332, Feb. 2016. 4. D. M. Sheen et al., "Wide-bandwidth wide-beamwidth high-resolution millimeter-wave imaging for concealed weapon detection", Proc. SPIE, vol. 8715, pp. 871509, May 2013. 5. T. S. Rappaport, J. N. Murdock, F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications", Proc. IEEE, vol. 99, no. 8, pp. 1390-1436, Aug. 2011. 6. A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, P.-S. Kildal, "Design of transition from coaxial line to ridge gap waveguide", Proc. IEEE Antennas Propag. Soc. Int. Symp., pp. 1-4, Jun. 2009. 7. P.-S. Kildal, "Three metamaterial-based gap waveguides between parallel metal plates for mm/submm waves", Proc. 3rd Eur. Conf. Antennas Propag., pp. 28-32, Mar. 2009. 8. P.-S. Kildal, A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, A. Valero-Nogueira, "Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression", IET Microw. Antennas Propag., vol. 5, no. 3, pp. 262-270, Mar. 2011. 9. H. Raza, J. Yang, P.-S. Kildal, E. A. Alós, "Microstrip-ridge gap waveguide–study of losses bends and transition to WR-15", IEEE Trans. Microw. Theory Techn., vol. 62, no. 9, pp. 1943-1952, Sep. 2014. 10. M. Bozzi, A. Georgiadis, K. Wu, "Review of substrate-integrated waveguide circuits and antennas", IET Microw. Antennas Propag., vol. 5, no. 8, pp. 909-920, Jun. 2011. 11. M. M. M. Ali, S. I. Shams, A. R. Sebak, "Printed ridge gap waveguide 3-dB coupler: Analysis and design procedure", IEEE Access, vol. 6, pp. 8501-8509, 2018. 12. A. Farahbakhsh, D. Zarifi, A. U. Zaman, "A mm Wave wideband slot array antenna based on ridge gap waveguide with 30% bandwidth", IEEE Trans. Antennas Propag., vol. 66, no. 2, pp. 1008-1013, Feb. 2018. 13. S. Birgermajer, N. Janković, V. Crnojević-Bengin, M. Bozzi, V. Radonić, "Forward-wave 0 dB directional coupler based on microstrip-ridge gap waveguide technology", Proc. 13th Int. Conf. Adv. Technol. Syst. Services Telecommun. (TELSIKS), pp. 154-157, Oct. 2017. 14. S. Birgermajer, N. Janković, V. Radonić, V. Crnojević-Bengin, M. Bozzi, "Microstrip-ridge gap waveguide filter based on cavity resonators with mushroom inclusions", IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 136-146, Jan. 2018. 15. M. M. M. Ali, A. r. Sebak, "Compact printed ridge gap waveguide crossover for future 5G wireless communication system", IEEE Microw. Wireless Compon. Lett., vol. 28, no. 7, pp. 549-551, Jul. 2018. 16. M. Farahani, M. Akbari, M. Nedil, T. A. Denidni, A. R. Sebak, "A novel low-loss millimeter-wave 3-dB 90° ridge-gap coupler using large aperture progressive phase compensation", IEEE Access, vol. 5, pp. 9610-9618, 2017. 17. A. Dadgarpour, M. S. Sorkherizi, A. A. Kishk, "High-efficient circularly polarized magnetoelectric dipole antenna for 5G applications using dual-polarized split-ring resonator lens", IEEE Trans. Antennas Propag., vol. 65, no. 8, pp. 4263-4267, Aug. 2017. 18. S. I. Shams, A. A. Kishk, "Design of 3-dB hybrid coupler based on RGW technology", IEEE Trans. Microw. Theory Techn., vol. 65, no. 10, pp. 3849-3855, Oct. 2017. 19. M. S. Sorkherizi, A. Dadgarpour, A. A. Kishk, "Planar high-efficiency antenna array using new printed ridge gap waveguide technology", IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3772-3776, Jul. 2017. 20. M. S. Sorkherizi, A. A. Kishk, "Transition from microstrip to printed ridge gap waveguide for millimeter-wave application", Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, pp. 1588-1589, Jul. 2015. 21. B. Molaei, A. Khaleghi, "A novel wideband microstrip line to ridge gap waveguide transition using defected ground slot", IEEE Microw. Wireless Compon. Lett., vol. 25, no. 2, pp. 91-93, Feb. 2015. 22. M. S. Sorkherizi, A. A. Kishk, "Fully printed gap waveguide with facilitated design properties", IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 657-659, Sep. 2016. 23. U. Nandi, A. U. Zaman, A. Vosoogh, J. Yang, "Millimeter wave contactless microstrip-gap waveguide transition suitable for integration of RF MMIC with gap waveguide array antenna", Proc. 11th Eur. Conf. Antennas Propag. (EUCAP), pp. 1682-1684, Mar. 2017. 24. N. Bayat-Makou, A. A. Kishk, "Realistic air-filled TEM printed parallel-plate waveguide based on ridge gap waveguide", IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp. 2128-2140, May 2018. 25. F. Fan, J. Yang, V. Vassilev, A. Uz Zaman, "Bandwidth investigation on half-height pin in ridge gap waveguide", IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 100-108, Jan. 2018. 26. S. I. Shams, A. A. Kishk, "Wideband coaxial to ridge gap waveguide transition", IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4117-4125, Dec. 2016. 27. M. A. Nasr, A. A. Kishk, "Wideband inline coaxial to ridge waveguide transition with tuning capability for ridge gap waveguide", IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 2757-2766, Jun. 2018. 28. D. Zarifi, A. Farahbakhsh, A. U. Zaman, P. S. Kildal, "Design and fabrication of a high-gain 60-GHz corrugated slot antenna array with ridge gap waveguide distribution layer", IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 2905-2913, Jul. 2016. 29. Z. Talepour, A. Khaleghi, "A K-band planar slot array antenna on a single layer ridge gap waveguide", Proc. 11th Eur. Conf. Antennas Propag. (EUCAP), pp. 1685-1689, Mar. 2017. 30. F. Ahmadfard, S. A. Razavi, "Bandwidth and gain enhancement of ridge gap waveguide H-plane horn antennas using outer transitions", IEEE Trans. Antennas Propag., vol. 66, no. 8, pp. 4315-4319, Aug. 2018. 31. D. M. Pozar, Microwave Engineering, Hoboken, NJ, USA:Wiley, 2011. 32. G. M. Rebeiz, RF MEMS: Theory Design and Technology, New York, NY, USA:Wiley, 2003.