1. Kalivas PW, Volkow ND. The neural basis of addiction: A pathology of motivation and choice. American Journal of Psychiatry. 2005;162(8):1403-13. doi:10.1176/appi.ajp.162.8.1403 2. Brown RM, Kupchik YM, Kalivas PW. The story of glutamate in drug addiction and of n-acetylcysteine as a potential pharmacotherapy. JAMA Psychiatry. 2013;70(9):895-7. doi:10.1001/jamapsychiatry.2013.2207 3. Brown RM, Kupchik YM, Spencer S, Garcia-Keller C, Spanswick DC, Lawrence AJ, et al. Addiction-like synaptic impairments in diet-induced obesity. Biological Psychiatry. 2015. doi:10.1016/j.biopsych.2015.11.019 4. Sengmany K, Gregory KJ. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias. British Journal of Pharmacology. 2016;173(20):3001-17. doi:10.1111/bph.13281 5. Haass-Koffler CL, Goodyear K, Long VM, Tran HH, Loche A, Cacciaglia R, et al. A Phase I randomized clinical trial testing the safety, tolerability and preliminary pharmacokinetics of the mGluR5 negative allosteric modulator GET 73 following single and repeated doses in healthy volunteers. European Journal of Pharmaceutical Sciences. 2017;109:78-85. doi:10.1016/j.ejps.2017.07.031 6. Caprioli D, Justinova Z, Venniro M, Shaham Y. Effect of novel allosteric modulators of metabotropic glutamate receptors on drug self-administration and relapse: A review of preclinical studies and their clinical implications. Biological Psychiatry. 2018;84(3):180-92. doi:10.1016/j.biopsych.2017.08.018 7. Sinclair CM, Cleva RM, Hood LE, Olive MF, Gass JT. mGluR5 receptors in the basolateral amygdala and nucleus accumbens regulate cue-induced reinstatement of ethanol-seeking behavior. Pharmacology Biochemistry and Behavior. 2012;101(3):329-35. doi:10.1016/j.pbb.2012.01.014 8. Bäckström P, Bachteler D, Koch S, Hyytiä P, Spanagel R. mGluR5 antagonist MPEP reduces ethanol-seeking and relapse behavior. Neuropsychopharmacology. 2004;29:921. doi:10.1038/sj.npp.1300381 9. Cowen MS, Djouma E, Lawrence AJ. The metabotropic glutamate 5 receptor antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine reduces ethanol self-administration in multiple strains of alcohol-preferring rats and regulates olfactory glutamatergic systems. Journal of Pharmacology and Experimental Therapeutics. 2005;315(2):590-600. doi:10.1124/jpet.105.090449 10. Tessari M, Pilla M, Andreoli M, Hutcheson DM, Heidbreder CA. Antagonism at metabotropic glutamate 5 receptors inhibits nicotine- and cocaine-taking behaviours and prevents nicotine-triggered relapse to nicotine-seeking. European Journal of Pharmacology. 2004;499(1):121-33. doi:10.1016/j.ejphar.2004.07.056 11. Chiamulera C, Epping-Jordan MP, Zocchi A, Marcon C, Cottiny C, Tacconi S, et al. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nature Neuroscience. 2001;4:873. doi:10.1038/nn0901-873 12. Chesworth R, Brown RM, Kim JH, Lawrence AJ. The metabotropic glutamate 5 receptor modulates extinction and reinstatement of methamphetamine-seeking in mice. PLoS ONE. 2013;8(7):e68371. doi:10.1371/journal.pone.0068371 13. Knackstedt LA, Trantham-Davidson HL, Schwendt M. The role of ventral and dorsal striatum mGluR5 in relapse to cocaine-seeking and extinction learning. Addiction Biology. 2014;19(1):87-101. doi:10.1111/adb.12061 14. Field M, Cox WM. Attentional bias in addictive behaviors: A review of its development, causes, and consequences. Drug and Alcohol Dependence. 2008;97(1):1-20. doi:10.1016/j.drugalcdep.2008.03.030 15. Handford CE, Tan S, Lawrence AJ, Kim JH. The effect of the mGlu5 negative allosteric modulator MTEP and NMDA receptor partial agonist D-cycloserine on Pavlovian conditioned fear. International Journal of Neuropsychopharmacology. 2014;17(9):1521-32. doi:10.1017/S1461145714000303 16. Gravius A, Barberi C, Schäfer D, Schmidt WJ, Danysz W. The role of group I metabotropic glutamate receptors in acquisition and expression of contextual and auditory fear conditioning in rats – a comparison. Neuropharmacology. 2006;51(7):1146-55. doi:10.1016/j.neuropharm.2006.07.008 17. Simonyi A, Serfozo P, Parker KE, Ramsey AK, Schachtman TR. Metabotropic glutamate receptor 5 in conditioned taste aversion learning. Neurobiology of Learning and Memory. 2009;92(3):460-3. doi:10.1016/j.nlm.2009.05.002 18. O'Connor EC, Crombag HS, Mead AN, Stephens DN. The mGluR5 antagonist MTEP dissociates the acquisition of predictive and incentive motivational properties of reward-paired stimuli in mice. Neuropsychopharmacology. 2010;35:1807. doi:10.1038/npp.2010.48 19. Meyers AM, Mourra D, Beeler JA. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity. PLOS ONE. 2017;12(12):e0190206. doi:10.1371/journal.pone.0190206 20. Hoebel BG, Avena NM, Bocarsly ME, Rada P. Natural addiction: A behavioral and circuit model based on sugar addiction in rats. Journal of Addiction Medicine. 2009;3(1):33-41. doi:10.1097/ADM.0b013e31819aa621 21. Sciascia JM, Reese RM, Janak PH, Chaudhri N. Alcohol-seeking triggered by discrete pavlovian cues is invigorated by alcohol contexts and mediated by glutamate signaling in the basolateral amygdala. Neuropsychopharmacology. 2015;40(12):2801-12. doi:10.1038/npp.2015.130 22. Millan EZ, Reese RM, Grossman CD, Chaudhri N, Janak PH. Nucleus accumbens and posterior amygdala mediate cue-triggered alcohol seeking and suppress behavior during the omission of alcohol-predictive cues. Neuropsychopharmacology. 2015;40(11):2555-65. doi:10.1038/npp.2015.102 23. Valyear MD, Glovaci I, Zaari A, Lahlou S, Trujillo-Pisanty I, Chapman CA, et al. Divergent mesolimbic dopamine circuits support alcohol-seeking triggered by discrete cues and contexts. bioRxiv. 2018:475343. doi:10.1101/475343 24. Mihov Y, Hasler G. Negative allosteric modulators of metabotropic glutamate receptors subtype 5 in addiction: A therapeutic window. International Journal of Neuropsychopharmacology. 2016;19(7):pyw002-pyw. doi:10.1093/ijnp/pyw002 25. Parkes SL, Westbrook RF. The basolateral amygdala is critical for the acquisition and extinction of associations between a neutral stimulus and a learned danger signal but not between two neutral stimuli. The Journal of Neuroscience. 2010;30(38):12608-18. doi:10.1523/jneurosci.2949-10.2010 26. Homayoun H, Moghaddam B. Bursting of prefrontal cortex neurons in awake rats is regulated by metabotropic glutamate 5 (mGlu5) receptors: Rate-dependent influence and interaction with NMDA receptors. Cerebral Cortex. 2006;16(1):93-105. doi:10.1093/cercor/bhi087 27. Homayoun H, Stefani MR, Adams BW, Tamagan GD, Moghaddam B. Functional interaction between NMDA and mGlu5 receptors: Effects on working memory, instrumental learning, motor behaviors, and dopamine release. Neuropsychopharmacology. 2004;29:1259. doi:10.1038/sj.npp.1300417 28. Fowler SW, Ramsey AK, Walker JM, Serfozo P, Olive MF, Schachtman TR, et al. Functional interaction of mGlu5 and NMDA receptors in aversive learning in rats. Neurobiology of Learning and Memory. 2011;95(1):73-9. doi:10.1016/j.nlm.2010.11.009 29. Khoo SY-S, Uhrig A, Chaudhri N. Context does not invigorate responding to a neutral stimulus. Figshare. 2019. doi:10.6084/m9.figshare.7483478 30. Chaudhri N, Woods CA, Sahuque LL, Gill TM, Janak PH. Unilateral inactivation of the basolateral amygdala attenuates context-induced renewal of pavlovian-conditioned alcohol-seeking. European Journal of Neuroscience. 2013;38(5):2751-61. doi:10.1111/ejn.12278 31. Panayi MC, Killcross S. Functional heterogeneity within the rodent lateral orbitofrontal cortex dissociates outcome devaluation and reversal learning deficits. eLife. 2018;7:e37357. doi:10.7554/eLife.37357 32. Khoo SY-S, LeCocq MR, Deyab GE, Chaudhri N. Context and topography determine the role of basolateral amygdala metabotropic glutamate receptor 5 in appetitive Pavlovian responding. Figshare. 2019. doi:10.6084/m9.figshare.7045493 33. Gass JT, Osborne MPH, Watson NL, Brown JL, Olive MF. mGluR5 antagonism attenuates methamphetamine reinforcement and prevents reinstatement of methamphetamine-seeking behavior in rats. Neuropsychopharmacology. 2009;34:820. doi:10.1038/npp.2008.140 34. Knackstedt LA, Schwendt M. mGlu5 receptors and relapse to cocaine-seeking: The role of receptor trafficking in postrelapse extinction learning deficits. Neural Plasticity. 2016;2016:9312508. doi:10.1155/2016/9312508 35. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. London: Academic Press; 2007. 36. Swanson LW. Brain maps 4.0—Structure of the rat brain: An open access atlas with global nervous system nomenclature ontology and flatmaps. Journal of Comparative Neurology. 2018;526(6):935-43. doi:10.1002/cne.24381 37. McLaughlin RJ, Floresco SB. The role of different subregions of the basolateral amygdala in cue-induced reinstatement and extinction of food-seeking behavior. Neuroscience. 2007;146(4):1484-94. doi:10.1016/j.neuroscience.2007.03.025 38. Keefer SE, Petrovich GD. Distinct recruitment of basolateral amygdala-medial prefrontal cortex pathways across Pavlovian appetitive conditioning. Neurobiology of Learning and Memory. 2017;141:27-32. doi:10.1016/j.nlm.2017.03.006 39. Kantak KM, Black Y, Valencia E, Green-Jordan K, Eichenbaum HB. Dissociable effects of lidocaine inactivation of the rostral and caudal basolateral amygdala on the maintenance and reinstatement of cocaine-seeking behavior in rats. The Journal of Neuroscience. 2002;22(3):1126-36. doi:10.1523/jneurosci.22-03-01126.2002 40. Gass JT, Olive MF. Positive allosteric modulation of mGluR5 receptors facilitates extinction of a cocaine contextual memory. Biological Psychiatry. 2009;65(8):717-20. doi:10.1016/j.biopsych.2008.11.001 41. Perry CJ, Reed F, Zbukvic IC, Kim JH, Lawrence AJ. The metabotropic glutamate 5 receptor is necessary for extinction of cocaine-associated cues. British Journal of Pharmacology. 2016;173(6):1085-94. doi:10.1111/bph.13437 42. Kumaresan V, Yuan M, Yee J, Famous KR, Anderson SM, Schmidt HD, et al. Metabotropic glutamate receptor 5 (mGluR5) antagonists attenuate cocaine priming- and cue-induced reinstatement of cocaine seeking. Behavioural Brain Research. 2009;202(2):238-44. doi:10.1016/j.bbr.2009.03.039 43. Georgiou P, Zanos P, Ehteramyan M, Hourani S, Kitchen I, Maldonado R, et al. Differential regulation of mGlu5R and ΜOPr by priming- and cue-induced reinstatement of cocaine-seeking behaviour in mice. Addiction Biology. 2015;20(5):902-12. doi:10.1111/adb.12208 44. Besheer J, Grondin JJM, Salling MC, Spanos M, Stevenson RA, Hodge CW. Interoceptive effects of alcohol require mGlu5 receptor activity in the nucleus accumbens. The Journal of Neuroscience. 2009;29(30):9582-91. doi:10.1523/jneurosci.2366-09.2009 45. Gass JT, Olive MF. Role of protein kinase C epsilon (PKCɛ) in the reduction of ethanol reinforcement due to mGluR5 antagonism in the nucleus accumbens shell. Psychopharmacology. 2009;204(4):587-97. doi:10.1007/s00213-009-1490-y 46. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168-76. doi:10.1038/nature05453 47. Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S. Antagonistic negative and positive neurons of the basolateral amygdala. Nature Neuroscience. 2016;19:1636. doi:10.1038/nn.4414 48. Mashhoon Y, Wells AM, Kantak KM. Interaction of the rostral basolateral amygdala and prelimbic prefrontal cortex in regulating reinstatement of cocaine-seeking behavior. Pharmacology Biochemistry and Behavior. 2010;96(3):347-53. doi:10.1016/j.pbb.2010.06.005 49. Szalay JJ, Morin ND, Kantak KM. Involvement of the dorsal subiculum and rostral basolateral amygdala in cocaine cue extinction learning in rats. European Journal of Neuroscience. 2011;33(7):1299-307. doi:10.1111/j.1460-9568.2010.07581.x 50. Wright CI, Groenewegen HJ. Patterns of overlap and segregation between insular cortical, intermediodorsal thalamic and basal amygdaloid afferents in the nucleus accumbens of the rat. Neuroscience. 1996;73(2):359-73. doi:10.1016/0306-4522(95)00592-7 51. Wright CI, Groenewegen HJ. Patterns of convergence and segregation in the medial nucleus accumbens of the rat: Relationships of prefrontal cortical, midline thalamic, and basal amygdaloid afferents. The Journal of Comparative Neurology. 1995;361(3):383-403. doi:10.1002/cne.903610304 52. Beyeler A, Chang C-J, Silvestre M, Lévêque C, Namburi P, Wildes CP, et al. Organization of valence-encoding and projection-defined neurons in the basolateral amygdala. Cell Reports. 2018;22(4):905-18. doi:10.1016/j.celrep.2017.12.097 53. Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature. 2015;517(7534):284-92. doi:10.1038/nature14188