[1] E.A. Veal, A. M. Day, B. A. Morgan, Hydrogen peroxide sensing and signaling, Mol. Cell 26(2007)1–14. [2] M. Ristow, S. Schmeisser, Extending lifespan by increasing oxidative stress, Free Radic. Biol. Med. 51(2011)327–336. [3] A. Mesquita, M. Weinberger, A. Silva, B. Sampaio-Marques, B. Almeida, C. Leao, V. Costa, F. Rodrigues, W.C. Burhans, P. Ludovico, Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity, Proc. Natl. Acad. Sci. USA 107(2010)15123–15128. [4] A.A. Goldberg, S.D. Bourque, P. Kyryakov, C. Gregg, T. Boukh-Viner, A. Beach, M.T. Burstein G. Machkalyan V. Richard, S. Rampersa, D. Cyr, S. Milijevic, V.I. Titorenko , Effect of calorie restriction on the metabolic history of chronologically aging yeast, Exp. Gerontol. 44 (2009)555–571. [5] F.Madeo, E.Frohlich, M. Ligr, M. Grey, S.J. Sigrist, D.H. Wolf, K.U. Frohlich, Oxygen stress: a regulator of apoptosis in yeast, J. Cell Biol.145(1999) 757–767. [6] W.H. Koppenol, The haber-weiss cycle—70 years later, Redox Rep. 6(2001) 229–234. [7] J. Switala, P.C. Loewen, Diversity of properties among catalases, Arch. Biochem. Biophys. 401(2002)145–154. [8] F.P. Kuhajda, Fatty acid synthase and cancer: new application of an old pathway, Cancer Res.66(2006)5977–5980. [9] M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the warburg effect: the metabolic requirements of cell proliferation, Science 324(2009) 1029–1033. [10] C. Godon, G. Lagniel, J. Lee, J.M. Buhler, S. Kieffer, M. Perroti, H. Boucheriei, M.B. Toledano, J. Labarre, The H2O2 stimulon in Saccharomyces cerevisiae, J. Biol. Chem. 273(1998)22480–22489. [11] S. Izawa, Y. Inoue, A. Kimura, Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomy cescerevisiae, Biochem. J. 320(1996)61–67. [12] M. Bayliak, H. Semchyshyn, V. Lushchak, Effect of hydrogen peroxide on antioxidant enzyme activities in Saccharomy cescerevisiae is strain-specific, Biochemistry (Mosc) 71(2006)1013–1020. [13] W.H. Mager, A.J.J. Dekruijff, Stress-induced transcriptional activation, Micro- biol. Rev. (1995)506. [14] D. Martins, M. Kathiresan, A.M. English, Cytochrome c peroxidase is a mitochondrial heme-based H2O2 sensor that modulates antioxidant defense, Free Radic. Biol. Med. 65(2013)541–551. [15] H. Jiang , A.M. English, Phenotypic analysis of the ccp1Delta and ccp1Delta- ccp1W191F mutant strains of Saccharomy cescerevisiae indicates that cyto-chrome c peroxidase functions in oxidative-stress signaling, J. Inorg. Biochem. 100(2006)1996–2008. [16] M.M. Bradford, Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem. 72(1976)248–254. [17] R.F. Beers, I.W. Sizer,A spectrophotometric method for measuring the break-down o fhydrogen peroxide by catalase, J. Biol. Chem.195(1952)133–140. [18] R. Thieringer, H. Shio, Y.S. Han, G. Cohen, P.B. Lazarow, Peroxisomes in Saccharomy cescerevisiae: immunofluorescence analysis and import of catalase A into isolated peroxisomes, Mol. Cell. Biol.11(1991)510–522. [19] P.H. Bissinger, R. Wieser , B. Hamilton, H. Ruis, Control of Saccharomyces cerevisiae catalase Tgene (CTT1) expression by nutrient supply via the RAS-cyclic AMP pathway, Mol. Cell. Biol. 9(1989)1309–1315. [20] H.N. Kirkman, G.F. Gaetani, Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH, Proc. Natl. Acad. Sci. USA 81(1984)4343–4347. [21] H.S. Cross, H. Ruis, Regulation of catalase synthesis in Saccharomy cescerevisiae by carbon catabolite repression, Mol. Gen. Genet. 166(1978)37–43. [22] T. Bilinski, M. Kwolek, E. Sas, M. Krynicka, S. Koziol, A. Owsiak-Teleon, A. Krzepilko, G. Bartosz, A novel test for identifying genes involved in aldehyde detoxification in the yeast. Increased sensitivity of superoxide- deficient yeast to aldehydes and their metabolic precursors, Biofactors 24 (2005)59–65. [23] R. Wieser, G. Adam, A. Wagner, C. Schuller, G. Marchler, H. Ruis, Z. Krawiec, T. Bilinski, Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomy cescerevisiae, J. Biol. Chem. 266(1991)12406–12411. [24] J.M.S. Davies, C.V. Lowry, K.J.A. Davies, Transient adaptation to oxidative stress in yeast, Arch. Biochem. Biophys. 327(1995)1–6. [25] S. Izawa, Y. Inoue, A. Kimura, Oxidative stress-response in yeast—effect of glutathione on adaptation to hydrogen-peroxide stress in Saccharomyces cerevisiae, FEBS Lett. 368(1995)73–76. [26] M.J. Penninckx, An overview on glutathione in Saccharomyces versus non- conventional yeasts, FEMS Yeast Res. 2(2002)295–305. [27] E.W. Trotter, J.D. Rand, J. Vickerstaff, C.M. Grant, The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant, Biochem. J. 412(2008)73–80. [28] D.C. Munhoz, L.E. Netto, Cytosolic thioredoxin peroxidase I and II are important defenses of yeast against organic hydroperoxide insult: catalases and peroxiredoxins cooperate in the decomposition of H2O2 by yeast, J. Biol. Chem. 279(2004)35219–35227. [29] Y. Inoue, T. Matsuda, K. Sugiyama, S. Izawa, A. Kimura, Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomy cescerevisiae, J. Biol. Chem. 274(1999)27002–27009. [30] A. Delaunay, D. Pflieger, M.B. Barrault, J. Vinh, M.B.T oledano, A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation, Cell 111(2002)471–481. [31] B. D’Autreaux, M.B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat. Rev. Mol. Cell. Biol. 8(2007) 813–824. [32] C.E. Paulsen, K.S. Carroll, Chemical dissection of an essential redox switch in yeast, Chem. Biol. 16(2009)217–225.