1. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 798–805 2. Babenko B, Yang MH, Belongie S (2009) Visual tracking with online multiple instance learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 983–990 3. Bao C, Wu Y, Ling H, Ji H (2012) Real time robust L1 tracker using accelerated proximal gradient approach. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1830–1837 4. Chen D, Liu Q, Sun M, Yang J (2008) Mining appearance models directly from compressed video. IEEE Trans Multimed 10(2):268–276 5. Chen H, Zhang W, Zhao X, Tan m (2014) DCT representations based appearance model for visual tracking. In: Proceedings of the IEEE international conference on robotics and biometrics (ROBIO), pp 1614–1619 6. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell (PAMI) 25(5):564–577 7. Dai P, Luo Y, Liu W, Li C, Xie Y (2013) Robust visual tracking via part-based sparsity model. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1803–1806 8. Danelljan M, Hager G, Khan FS, Felsberg M (2015) Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 4310–4318 9. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image process 15(12):3736–3745 10. Gao J, Zhang T, Yang X, Xu C (2017) Deep relative tracking. IEEE Trans Image Process 26(4):1845–1858 11. Gao J, Zhang T, Yang X, Xu C (2018) P2T: Part-to-target tracking via deep regression learning. IEEE Trans Image Process 27(6):3074–3086 12. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: Proceedings of European conference on computer vision (ECCV), pp 234–247 13. Hafed ZM, Levine MD (2001) Face recognition using the discrete cosine transform. Int J Comput Vis 43(3):167–188 14. He D, Gu Z, Cercone N (2009) Efficient image retrieval in DCT domain by hypothesis testing. In: Proceedings of the IEEE international conference on image processing (ICIP), pp 225–228 15. Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell (PAMI) 37(3):583–596 16. Isard M, Blake A (1998) Condensation: Conditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28 17. Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1822–1829 18. Kristan M, Leonardis A, Matas J, Felsberg M, Pflugfelder R (2016) The visual object tracking VOT2016 challenge results. In: Proceedings of European conference on computer vision (ECCV), pp 1–45 19. Li Y, Ai H, Yamashita T, Lao S, Kawade M (2008) Tracking in low frame rate video: a cascade particle filter with discriminative observers of different life spans. IEEE Trans Pattern Anal Mach Intell (PAMI) 30(10):1728–1740 20. Li X, Dick A, Shen C, Hengel A, Wang H (2013) Incremental learning of 3d-DCT compact representations for robust visual tracking. IEEE Trans Pattern Anal Mach Intell (PAMI) 35(4):863–881 21. Li H, Li Y, Porikli F (2016) Deeptrack: Learning discriminative feature representations online for robust visual tracking. IEEE Trans Image Process 25(4):1834–1848 22. Lin C, Pun CM (2013) Tracking object using particle filter and DCT features. In: Proceedings of international conference on advances in computer science and engineering, pp 167–169 23. Mairal J, Bach F, Ponce J, Sapiro G (2010) Online learning for matrix factorization and sparse coding. J Mach Learn Res 11:19–60 24. Mei X, Ling H (2009) Robust visual tracking using L1 minimization. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1436–1443 25. Mei X, Ling H, Wu Y, Blasch E, Bai L (2011) Minimum error bounded efficient L1 tracker with occlusion detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1257–1264 26. Ou W, Yuan D, Liu Q, Cao Y (2018) Object tracking based on online representative sample selection via non-negative least square. Multimedia Tools Appl 77(9):10569–10587 27. Pennerbaker W, Mithchell J (1992) JPEG: Still image data compression standard. Springer Science & Business Media, Berlin 28. Qu P (2014) Visual tracking with fragments-based PCA sparse representation. Int J Signal Process, Image Process Pattern Recogn 7(2):23–34 29. Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77:125–141 30. Shreyamsha Kumar BK, Swamy MNS, Omair Ahmad M (2013) Multiresolution DCT decomposition for multifocus image fusion. In: Proceedings of the IEEE Canadian conference on electrical and computer engineering (CCECE), pp 1–4. https://doi.org/10.1109/CCECE.2013.6567721 31. Shreyamsha Kumar BK, Swamy MNS, Omair Ahmad M (2015) Structural local DCT sparse appearance model for visual tracking. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS), pp 1194–1197. https://doi.org/10.1109/ISCAS.2015.7168853 32. Shreyamsha Kumar BK, Swamy MNS, Omair Ahmad M (2016) Visual tracking via bilateral 2DPCA and robust coding. In: Proceedings of the IEEE Canadian conference on electrical and computer engineering (CCECE), pp 1–4. https://doi.org/10.1109/CCECE.2016.7726647 33. Shreyamsha Kumar BK, Swamy MNS, Omair Ahmad M (2016) Weighted residual minimization in PCA subspace for visual tracking. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS), pp 986–989. https://doi.org/10.1109/ISCAS.2016.7527408 34. Uzair M, Mahmood A, Mian AS (2013) Hyperspectral face recognition using 3d-DCT and partial least squares. In: Proceedings of British machine vision conference (BMVC), pp 1–10 35. Wang D, Lu H (2012) Object tracking via 2DPCA and L1-regularization. Signal Process Lett 19(11):711–714 36. Wang D, Lu H, Bo C (2015) Fast and robust object tracking via probability continuous outlier model. IEEE Trans Image Process 24(12):5166–5176 37. Wang D, Lu H, Bo C (2015) Visual tracking via weighted local cosine similarity. IEEE Trans Cybern 45(9):1838–1850 38. Wang D, Lu H, Yang MH (2013) Online object tracking with sparse prototypes. IEEE Trans Image Process 22(1):314–325 39. Wang N, Yeung DY (2013) Learning a deep compact image representation for visual tracking. In: Proceedings of advances in neural information processing systems (NIPS), pp 809–817 40. Wang F, Zhang J, Guo Q, Liu P, Tu D (2015) Robust visual tracking via discriminative structural sparse feature. In: Proceedings of the Chinese conference on image and graphics technologies, pp 438–446 41. Wang D, Lu H, Xiao Z, Yang MH (2015) Inverse sparse tracker with a locally weighted distance metric. IEEE Trans Image Process 24(9):2646–2657 42. Wang D, Lu H, Yang MH (2016) Robust visual tracking via least soft-threshold squares. IEEE Trans Circ Syst Video Technol 26(9):1709–1721 43. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell (PAMI) 31(2):210–227 44. Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 2411–2418 45. Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1794–1801 46. Yang H, Shao L, Zheng F, Wang L, Song Z (2011) Recent advances and trends in visual tracking: a review. Neurocomputing 74(18):3823–3831 47. You X, Li X, He Z, Zhang X (2015) A robust local sparse tracker with global consistency constraint. Signal Process 111:308–318 48. Zhang T, Ghanem B, Liu S, Ahuja N (2012) Robust visual tracking via multi-task sparse learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 2042–2049 49. Zhang H, Tao F, Yang G (2015) Robust visual tracking based on structured sparse representation model. Multimed Tools Appl 74(3):1021–1043 50. Zhang T, Bibi A, Ghanem B (2016) In defense of sparse tracking: Circulant sparse tracker. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 3880–3888 51. Zhang T, Xu C, Yang MH (2017) Multi-task correlation particle filter for robust object tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 4819–4827 52. Zhang T, Liu S, Xu C, Liu B, Yang MH (2018) Correlation particle filter for visual tracking. IEEE Trans Image Process 27(6):2676–2687 53. Zhang T, Xu C, Yang MH (2018) Learning multi-task correlation particle filters for visual tracking. IEEE Trans Pattern Anal Mach Intell (PAMI):1–14. https://doi.org/10.1109/TPAMI.2018.2797062 54. Zhong Y, Zhang H, Jain AK (2000) Automatic caption localization in compressed video. IEEE Trans Pattern Anal Mach Intell (PAMI) 22(4):385–392 55. Zhuang B, Wang L, Lu H (2016) Visual tracking via shallow and deep collaborative model. Neurocomputing 218:61–71