[1] D. A. Ross, J. Lim, R.-S. Lin, and M. H. Yang, “Incremental learning for robust visual tracking,” Int. J. Comput. Vision, vol. 77, pp. 125–141, May 2008. [2] X. Mei and H. Ling, “Robust visual tracking using L1 minimization,” in Proc. of the IEEE Int. Conf. on Comput. Vision (ICCV), Sep 2009, pp. 1436–1443. [3] D. Wang, H. Lu, and M. H. Yang, “Online object tracking with sparse prototypes,” IEEE Trans. on Image Processing, vol. 22, no. 1, pp. 314–325, Jan 2013. [4] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Comput. Surv., vol. 38, no. 4, pp. 1–45, Dec 2006. [5] H. Yang, L. Shao, F. Zheng, L. Wang, and Z. Song, “Recent advances and trends in visual tracking: A review,” Neurocomputing, vol. 74, no. 18, pp. 3823–3831, Nov 2011. [6] S. Dubuisson and C. Gonzales, “A survey of datasets for visual tracking,” Mach. Vision and Appl., vol. 27, no. 1, pp. 23–52, Jan 2016. [7] Y. Wu, J. Lim, and M. H. Yang, “Online object tracking: A benchmark,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2013, pp. 2411–2418. [8] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” in Proc. of Int. Joint Conf. on Artificial Intell. (IJCAI), Aug 1981, pp. 674–679. [9] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 25, no. 5, pp. 564–577, May 2003. [10] I. Matthews, T. Ishikawa, and S. Baker, “The template update problem,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 26, no. 6, pp. 810–815, Jun 2004. [11] A. Adam, E. Rivlin, and I. Shimshoni, “Robust fragments-based tracking using the integral histogram,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2006, pp. 798–805. [12] J. Kwon and K. M. Lee, “Visual tracking decomposition,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2010, pp. 1269–1276. [13] C. Bao, Y. Wu, H. Ling, and H. Ji, “Real time robust L1 tracker using accelerated proximal gradient approach,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2012, pp. 1830–1837. [14] W. Ou, D. Yuan, Q. Liu, and Y. Cao, “Object tracking based on online representative sample selection via non-negative least square,” Multimedia Tools and Appl., vol. 77, no. 9, pp. 10 569–10 587, 2018. [15] X. Jia, H. Lu, and M. H. Yang, “Visual tracking via adaptive structural local sparse appearance model,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2012, pp. 1822–1829. [16] J. Yang, R. Xu, J. Cui, and Z. Ding, “Robust visual tracking using adaptive local appearance model for smart transportation,” Multimedia Tools and Appl., vol. 75, no. 24, pp. 17 487–17 500, Dec 2016. [17] Y. Yi, Y. Cheng, and C. Xu, “Visual tracking based on hierarchical framework and sparse representation,” Multimedia Tools and Appl., pp. 1–23, 2017. [18] H. Wang, H. Ge, and S. Zhang, “Object tracking via 2DPCA and l2-regularization,” J. of Electrical and Comput. Engineering, vol. 2016, pp. 1–7, Jul 2016. [19] D. Wang and H. Lu, “Object tracking via 2DPCA and l1-regularization,” IEE Signal Processing Letters, vol. 19, no. 11, pp. 711–714, Nov 2012. [20] P. Qu, “Visual tracking with fragments-based PCA sparse representation,” Int. J. of Signal Processing, Image Processing and Pattern Recogn., vol. 7, no. 2, pp. 23–34, Feb 2014. [21] M. Sun, D. Du, H. Lu, and L. Zhang, “Visual tracking with a structured local model,” in Proc. of the IEEE Int. Conf. on Image Processing (ICIP), Sep 2015, pp. 2855–2859. [22] M. J. Black and A. D. Jepson, “Eigentracking: Robust matching and tracking of articulated objects using a view-based representation,” in Proc. of European Conf. on Comput. Vision (ECCV), Apr 1996, pp. 329–342. [23] M. Black, D. Fleet, and Y. Yacoob, “A framework for modeling appearance change in image sequences,” in Proc. of the IEEE Int. Conf. on Comput. Vision (ICCV), Jan 1998, pp. 660–667. [24] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi, “Robust online appearance models for visual tracking,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 25, no. 10, pp. 1296–1311, Oct 2003. [25] H. Wang, D. Suter, K. Schindler, and C. Shen, “Adaptive object tracking based on an effective appearance filter,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 29, no. 9, pp. 1661–1667, Sep 2007. [26] H. Grabner and H. Bischof, “On-line boosting and vision,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2006, pp. 260–267. [27] B. Babenko, M. H. Yang, and S. Belongie, “Visual tracking with online multiple instance learning,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2009, pp. 983–990. [28] H. Grabner, C. Leistner, and H. Bischof, “Semi-supervised on-line boosting for robust tracking,” in Proc. of European Conf. on Comput. Vision (ECCV), Oct 2008, pp. 234–247. [29] S. Avidan, “Support vector tracking,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 26, no. 8, pp. 1064–1072, Aug 2004. [30] F. Wang, J. Zhang, Q. Guo, P. Liu, and D. Tu, “Robust visual tracking via discriminative structural sparse feature,” in Proc. of the Chinese Conf. on Image and Graphics Technologies, Jun 2015, pp. 438–446. [31] R. T. Collins, Y. Liu, and M. Leordeanu, “Online selection of discriminative tracking features,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 27, no. 10, pp. 1631–1643, Oct 2005. [32] S. Avidan, “Ensemble tracking,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 29, no. 2, pp. 261–271, Feb 2007. [33] Z. Kalal, J. Matas, and K. Mikolajczyk, “P-N learning: Bootstrapping binary classifiers by structural constraints,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2010, pp. 49–56. [34] S. Wang, H. Lu, F. Yang, and M.-H. Yang, “Superpixel tracking,” in Proc. of the IEEE Int. Conf. on Comput. Vision (ICCV), Nov 2011, pp. 1323–1330. [35] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time object tracking via online dis criminative feature selection,” IEEE Trans. on Image Processing, vol. 22, no. 12, pp. 4664–4677, Dec 2013. [36] X. Li, A. Dick, C. Shen, A. Hengel, and H. Wang, “Incremental learning of 3D-DCT compact representations for robust visual tracking,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 35, no. 4, pp. 863–881, Apr 2013. [37] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes,” in Proc. of Advances in Neural Information Processing Systems (NIPS), vol. 14, Dec 2001, pp. 841–848. [38] J. A. Lasserre, C. M. Bishop, and T. P. Minka, “Principled hybrids of generative and discriminative models,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2006, pp. 87–94. [39] F. Tang, S. Brennan, Q. Zhao, and H. Tao, “Co-tracking using semi-supervised support vector machines,” in Proc. of the IEEE Int. Conf. on Comput. Vision (ICCV), Oct 2007, pp. 1–8. [40] Q. Yu, T. Dinh, and G. Medioni, “Online tracking and reacquisition using co-trained generative and discriminative trackers,” in Proc. of European. Conf. on Comput. Vision (ECCV), Oct 2008, pp. 678–691. [41] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof, “PROST: Parallel robust online simple tracking,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2010, pp. 723–730. [42] W. Zhong, H. Lu, and M. H. Yang, “Robust object tracking via sparsity-based collaborative model,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2012, pp. 1838–1845. [43] W. Zhong, H. Lu, and M.-H. Yang, “Robust object tracking via sparse collaborative appearance model,” IEEE Trans. on Image Processing, vol. 23, no. 5, pp. 2356–2368, May 2014. [44] C. Xie, J. Tan, P. Chen, J. Zhang, and L. He, “Collaborative object tracking model with local sparse representation,” J. of Visual Communication and Image Represen tation, vol. 25, no. 2, pp. 423–434, Feb 2014. [45] H. Zhang, F. Tao, and G. Yang, “Robust visual tracking based on structured sparse representation model,” Multimedia Tools and Appl., vol. 74, no. 3, pp. 1021–1043, 2015. [46] B. Zhuang, L. Wang, and H. Lu, “Visual tracking via shallow and deep collaborative model,” Neurocomputing, vol. 218, pp. 61–71, Dec 2016. [47] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned dictionaries,” IEEE Trans. on Image processing, vol. 15, no. 12, pp. 3736–3745, Dec 2006. [48] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for image classification,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2009, pp. 1794–1801. [49] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 31, no. 2, pp. 210–227, Feb 2009. [50] X. Mei and H. Ling, “Robust visual tracking and vehicle classification via sparse representation,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 33, no. 11, pp. 2259–2272, Nov 2011. [51] B. Liu, L. Yang, J. Huang, P. Meer, L. Gong, and C. Kulikowski, “Robust and fast collaborative tracking with two stage sparse optimization,” in Proc. of European Conf. on Comput. Vision (ECCV), Sep 2010, pp. 624–637. [52] X. Mei, H. Ling, Y. Wu, E. Blasch, and L. Bai, “Minimum error bounded efficient L1 tracker with occlusion detection,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2011, pp. 1257–1264. [53] J. Yan and M. Tong, “Weighted sparse coding residual minimization for visual tracking,” in Proc. of Visual Communications and Image Processing (VCIP), Nov 2011, pp. 1–4. [54] M. Jiang, H. Wang, and B. Wang, “Robust visual tracking based on maximum likelihood estimation,” Int. J. of Digital Content Tech. and its Appl., vol. 6, no. 22, pp. 467–474, Dec 2012. [55] Q. Wang, F. Chen, W. Xu, and M. H. Yang, “Online discriminative object tracking with local sparse representation,” in Proc. of the IEEE Workshop on the Appl. of Comput. Vision (WACV), Jan 2012, pp. 425–432. [56] O. Tuzel, F. Porikli, and P. Meer, “Region covariance: A fast descriptor for detection and classification,” in Proc. of European Conf. on Comput. Vision (ECCV), May 2006, pp. 589–600. [57] F. Porikli, O. Tuzel, and P. Meer, “Covariance tracking using model update based on lie algebra,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2006, pp. 728–735. [58] Y. Wu, J. Cheng, J. Wang, and H. Lu, “Real-time visual tracking via incremental covariance tensor learning,” in Proc. of the IEEE Int. Conf. on Comput. Vision (ICCV), Sep 2009, pp. 1631–1638. [59] M. Chen, S. K. Pang, T.-J. Cham, and A. Goh, “Visual tracking with generative template model based on riemannian manifold of covariances,” in Proc. of the IEEE Int. Conf. on Information Fusion (FUSION), Jul 2011, pp. 1–8. [60] Y. Wu, B. Wu, J. Liu, and H. Lu, “Probabilistic tracking on riemannian manifolds,” in Proc. of the IEEE Int. Conf. on Pattern Recogn. (ICPR), Dec 2008, pp. 1–4. [61] Y. Wu, J. Wang, and H. Lu, “Robust bayesian tracking on riemannian manifolds via fragments-based representation,” in Proc. of the IEEE Int. Conf. Acoustics, Speech and Signal Processing, (ICASSP), Apr 2009, pp. 765–768. [62] X. Li, W. Hu, Z. Zhang, X. Zhang, M. Zhu, and J. Cheng, “Visual tracking via incremental log-euclidean riemannian subspace learning,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2008, pp. 1–8. [63] T. Wang, I. Gu, and P. Shi, “Object tracking using incremental 2D-PCA learning and ML estimation,” in Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Apr 2007, pp. 933–936. [64] M.-X. Jiang, M. Li, and H.-Y. Wang, “Visual object tracking based on 2DPCA and ML,” Mathematical Problems in Engineering, vol. 2013, pp. 1–7, 2013. [65] D. Wang, H. Lu, and M.-H. Yang, “Robust visual tracking via least soft-threshold squares,” IEEE Trans. on Circuits and Systems for Video Tech., vol. 26, no. 9, pp. 1709–1721, Sep 2016. [66] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object tracking using adaptive correlation filters,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2010, pp. 2544–2550. [67] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de Weijer, “Adaptive color attributes for real-time visual tracking,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2014, pp. 1090–1097. [68] M. Danelljan, G. Hager, F. Khan, and M. Felsberg, “Accurate scale estimation for robust visual tracking,” in Proc. of British Machine Vision Conf. (BMVC), Sep 2014, pp. 1–11. [69] M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg, “Discriminative scale space tracking,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 39, no. 8, pp. 1561–1575, Aug 2017. [70] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting the circulant structure of tracking-by-detection with kernels,” in Proc. of European Conf. on Comput. Vision (ECCV), Oct 2012, pp. 702–715. [71] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with kernelized correlation filters,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 37, no. 3, pp. 583–596, Mar 2015. [72] C. Ma, X. Yang, C. Zhang, and M.-H. Yang, “Long-term correlation tracking,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2015, pp. 5388–5396. [73] A. Bibi, M. Mueller, and B. Ghanem, “Target response adaptation for correlation filter tracking,” in Proc. of European Conf. on Comput. Vision (ECCV), Oct 2016, pp. 419–433. [74] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. Torr, “Staple: Complementary learners for real-time tracking,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2016, pp. 1401–1409. [75] T. Zhang, S. Liu, C. Xu, B. Liu, and M.-H. Yang, “Correlation particle filter for visual tracking,” IEEE Trans. on Image Processing, vol. 27, no. 6, pp. 2676–2687, Jun 2018. [76] H. Kiani Galoogahi, T. Sim, and S. Lucey, “Correlation filters with limited boundaries,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2015, pp. 4630–4638. [77] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Learning spatially regularized correlation filters for visual tracking,” in Proc. of the IEEE Int. Conf. on Comput. Vision (ICCV), Dec 2015, pp. 4310–4318. [78] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Convolutional features for correlation filter based visual tracking,” in Proc. of the IEEE Int. Conf. on Comput. Vision (ICCV) Workshops, Dec 2015, pp. 58–66. [79] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Adaptive decontamination of the training set: A unified formulation for discriminative visual tracking,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2016, pp. 1430–1438. [80] Y. Li and J. Zhu, “A scale adaptive kernel correlation filter tracker with feature integration,” in Proc. of European Conf. on Comput. Vision (ECCV), Sep 2014, pp. 254–265. [81] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection with discriminatively trained part-based models,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 32, no. 9, pp. 1627–1645, Sep 2010. [82] J. Van De Weijer, C. Schmid, J. Verbeek, and D. Larlus, “Learning color names for real-world applications,” IEEE Trans. on Image Processing, vol. 18, no. 7, pp. 1512–1523, Jul 2009. [83] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hierarchical convolutional features for visual tracking,” in Proc. of the IEEE Int. Conf. on Comput. Vision (ICCV), Dec 2015, pp. 3074–3082. [84] L. Wang, W. Ouyang, X. Wang, and H. Lu, “Visual tracking with fully convolutional networks,” in Proc. of the IEEE Int. Conf. on Comput. Vision (ICCV), Dec 2015, pp. 3119–3127. [85] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M.-H. Yang, “Hedged deep tracking,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2016, pp. 4303–4311. [86] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg, “Beyond correlation filters: Learning continuous convolution operators for visual tracking,” in Proc. of European Conf. on Comput. Vision (ECCV), Oct 2016, pp. 472–488. [87] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2009, pp. 248–255. [88] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. of Comput. Vision, vol. 115, no. 3, pp. 211–252, Dec 2015. [89] C. He, Y. F. Zheng, and S. C. Ahalt, “Object tracking using the gabor wavelet transform and the golden section algorithm,” IEEE Trans. on Multimedia, vol. 4, no. 4, pp. 528–538, Dec 2002. [90] H. Sun, Q. Bu, and H. Zhang, “PSO based gabor wavelet feature extraction and tracking method,” in Proc. of SPIE, Nov 2008, pp. 1–8. [91] K. Selvakumar and J. Jerome, “Robust object tracking via class aware partial least squares gabor wavelet subspace,” Procedia Engineering, vol. 64, no. 0, pp. 159 – 168, 2013. [92] P. Prez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based probabilistic tracking,” in Proc. of European. Conf. on Comput. Vision (ECCV), May 2002, vol. 2350, pp. 661–675. [93] D. Wang, H. Lu, and Y. W. Chen, “Incremental MPCA for color object tracking,” in Proc. of the IEEE Int. Conf. on Pattern Recogn. (ICPR), Aug 2010, pp. 1751–1754. [94] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, and R. Pfl ugfelder, “The visual object tracking VOT2016 challenge results,” in Proc. of European Conf. on Comput. Vision (ECCV), Oct 2016, pp. 1–45. [95] I. Jolliffe, Principal Component Analysis. Springer-Verlag New York, Inc., 2002. [96] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: A review,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 22, no. 1, pp. 4–37, Jan 2000. [97] M. Kirby and L. Sirovich, “Application of the karhunen-loeve procedure for the characterization of human faces,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 12, no. 1, pp. 103–108, Jan 1990. [98] N. F. Guler and S. Kocer, “Classification of EMG signals using PCA and FFT,” J. of Medical Systems, vol. 29, no. 3, pp. 241–250, Jun 2005. [99] H. Kong, L. Wang, E. K. Teoh, X. Li, J.-G. Wang, and R. Venkateswarlu, “Generalized 2D principal component analysis for face image representation and recognition,” Neural Networks, vol. 18, no. 5, pp. 585–594, Jul 2005. [100] J. Yang, D. Zhang, A. F. Frangi, and J.-y. Yang, “Two-dimensional PCA: A new approach to appearance-based face representation and recognition,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 26, no. 1, pp. 131–137, Jan 2004. [101] D. Zhang and Z.-H. Zhou, “(2D)2 PCA: Two-directional two-dimensional PCA for efficient face representation and recognition,” Neurocomputing, vol. 69, no. 13, pp. 224 – 231, Dec 2005. [102] M. Isard and A. Blake, “Condensation: Conditional density propagation for visual tracking,” Int. J. Comput. Vision, vol. 29, no. 1, pp. 5–28, Aug 1998. [103] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder, G. Fernandez, G. Nebehay, F. Porikli, and L. Cehovin, “A novel performance evaluation methodology for single-target trackers,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 38, no. 11, pp. 2137–2155, Nov 2016. [104] M. Everingham, L. V. Gool, C. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes (VOC) challenge,” Int. J. Comput. Vision, vol. 88, no. 2, pp. 303–338, 2010. [105] B. Babenko, M.-H. Yang, and S. Belongie, “Robust object tracking with online multiple instance learning,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 33, no. 8, pp. 1619–1632, Aug 2011. [106] L. Cehovin, A. Leonardis, and M. Kristan, “Visual object tracking performance measures revisited,” IEEE Trans. on Image Processing, vol. 25, no. 3, pp. 1261–1274, Mar 2016. [107] W. Hu, X. Li, X. Zhang, X. Shi, S. Maybank, and Z. Zhang, “Incremental tensor subspace learning and its applications to foreground segmentation and tracking,” Int. J. Comput. Vision, vol. 91, no. 3, pp. 303–327, Feb 2011. [108] D. Wang, H. Lu, and C. Bo, “Visual tracking via weighted local cosine similarity,” IEEE Trans. on Cybernetics, vol. 45, no. 9, pp. 1838–1850, Sep 2015. [109] B. K. Shreyamsha Kumar, M.N.S. Swamy, and M. Omair Ahmad, “Robust coding in a global subspace model and its collaboration with a local model for visual tracking,” Special issue on Artificial Intelligence in Multimedia Computing, Multimedia Tools and Appl., pp. 1–27, 2019. [110] B. K. Shreyamsha Kumar, M.N.S. Swamy, and M. Omair Ahmad, “Weighted residual minimization in PCA subspace for visual tracking,” in Proc. of the IEEE Int. Symp. on Circuits and Systems (ISCAS), May 2016, pp. 986–989. [111] T. Zhou, H. Bhaskar, K. Xie, J. Yang, X. He, and P. Shi, “Online learning of multi-feature weights for robust object tracking,” in Proc. of the IEEE Int. Conf. on Image Processing (ICIP), Sep 2015, pp. 725–729. [112] T. Zhou, H. Bhaskar, F. Liu, J. Yang, and P. Cai, “Online learning and joint optimization of combined spatial-temporal models for robust visual tracking,” Neurocomputing, vol. 226, pp. 221–237, Feb 2017. [113] X. Zhang, G.-S. Xia, Q. Lu, W. Shen, and L. Zhang, “Visual object tracking by correlation filters and online learning,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 140, pp. 77–89, Jun 2018. [114] T. Zhou, F. Liu, H. Bhaskar, and J. Yang, “Robust visual tracking via online discriminative and low-rank dictionary learning,” IEEE Trans. on Cybernetics, vol. 48, no. 9, pp. 2643–2655, Sep 2018. [115] M. Yang, D. Zhang, J. Yang, and D. Zhang, “Robust sparse coding for face recognition,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2011, pp. 625–632. [116] M. J. Black and A. D. Jepson, “Eigentracking: Robust matching and tracking of articulated objects using a view-based representation,” Int. J. of Comput. Vision, vol. 26, no. 1, pp. 63–84, Jan 1998. [117] D. Wang, H. Lu, Z. Xiao, and M.-H. Yang, “Inverse sparse tracker with a locally weighted distance metric,” IEEE Trans. on Image Processing, vol. 24, no. 9, pp. 2646–2657, Sep 2015. [118] B. K. Shreyamsha Kumar, M.N.S. Swamy, and M. Omair Ahmad, “Visual tracking via bilateral 2DPCA and robust coding,” in Proc. of the IEEE Canadian Conf. on Electrical and Comput. Engineering (CCECE), May 2016, pp. 1–4. [119] D. Wang, H. Lu, and C. Bo, “Fast and robust object tracking via probability continuous outlier model,” IEEE Trans. on Image Processing, vol. 24, no. 12, pp. 5166–5176, Dec 2015. [120] N. Wang and D.-Y. Yeung, “Learning a deep compact image representation for visual tracking,” in Proc. of Advances in Neural Information Processing Systems (NIPS), Dec 2013, pp. 809–817. [121] http://www.cs.toronto.edu/~dross/ivt. Accessed: Jun, 2014. [122] http://www.dabi.temple.edu/~hbling/code/L1-APG_release.zip. Accessed: Aug, 2015. [123] http://faculty.ucmerced.edu/mhyang/project/tip13_prototype/TIP12-SP.htm. Accessed: Mar, 2014. [124] https://github.com/huchuanlu/15_9. Accessed: Feb, 2016. [125] https://github.com/huchuanlu/15_12. Accessed: Feb, 2016. [126] http://faculty.ucmerced.edu/mhyang/project/cvpr13_lss/LSST-MatlabCode-V1.zip. Accessed: Sep, 2015. [127] https://github.com/huchuanlu/14_1. Accessed: Oct, 2015. [128] http://winsty.net/dlt.html. Accessed: Apr, 2017. [129] X. Mei, H. Ling, Y. Wu, E. P. Blasch, and L. Bai, “Efficient minimum error bounded particle resampling l1 tracker with occlusion detection,” IEEE Trans. on Image Processing, vol. 22, no. 7, pp. 2661–2675, Jul 2013. [130] B. Liu, J. Huang, L. Yang, and C. Kulikowsk, “Robust tracking using local sparse appearance model and K -selection,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), Jun 2011, pp. 1313–1320. [131] P. Dai, Y. Luo, W. Liu, C. Li, and Y. Xie, “Robust visual tracking via part-based sparsity model,” in Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), May 2013, pp. 1803–1806. [132] X. You, X. Li, Z. He, and X. Zhang, “A robust local sparse tracker with global consistency constraint,” Signal Processing, vol. 111, pp. 308–318, Jun 2015. [133] B. K. Shreyamsha Kumar, M.N.S. Swamy, and M. Omair Ahmad, “Visual track ing using structural local DCT sparse appearance model with occlusion detection,” Multimedia Tools and Appl., vol. 78, no. 6, pp. 7243–7266, 2019. [134] B. K. Shreyamsha Kumar, M.N.S. Swamy, and M. Omair Ahmad, “Structural local DCT sparse appearance model for visual tracking,” in Proc. of the IEEE Int. Symp. on Circuits and Systems (ISCAS), May 2015, pp. 1194–1197. [135] C. Lin and C.-M. Pun, “Tracking object using particle filter and DCT features,” in Proc. of Int. Conf. on Advances in Comput. Science and Engineering, Jun 2013, pp. 167–169. [136] H. Chen, W. Zhang, X. Zhao, and M. Tan, “DCT representations based appearance model for visual tracking,” in Proc. of the IEEE Int. Conf. on Robotics and Biometrics (ROBIO), Dec 2014, pp. 1614–1619. [137] G. Feng and J. Jiang, “JPEG compressed image retrieval via statistical features,” Pattern Recogn., vol. 36, no. 4, pp. 977–985, Apr 2003. [138] D. He, Z. Gu, and N. Cercone, “Efficient image retrieval in DCT domain by hypothesis testing,” in Proc. of the IEEE Int. Conf. on Image Processing (ICIP), Nov 2009, pp. 225–228. [139] B. K. Shreyamsha Kumar, M.N.S. Swamy, and M. Omair Ahmad, “Multiresolution DCT decomposition for multifocus image fusion,” in Proc. of the IEEE Canadian Conf. on Electrical and Comput. Engineering (CCECE), May 2013, pp. 1–4. [140] B. K. Shreyamsha Kumar, “Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform,” Signal, Image and Video Processing, vol. 7, no. 6, pp. 1125–1143, Nov 2013. [141] M. Shivamurti and S. Narasimhan, “Analytic discrete cosine harmonic wavelet transform (ADCHWT) and its application to signal/image denoising,” in Proc. of the IEEE Int. Conf. on Signal Processing and Communications (SPCOM), Jul 2010, pp. 1–5. [142] B. K. Shreyamsha Kumar, “Image denoising using discrete cosine harmonic wavelets,” Sensor Signal Process. Group, Central Research Laboratory, Bangalore, India, Tech. Rep., Jul 2010. [143] Z. M. Hafed and M. D. Levine, “Face recognition using the discrete cosine transform,” Int. J. Comput. Vision, vol. 43, no. 3, pp. 167–188, Jul 2001. [144] M. Uzair, A. Mahmood, and A. S. Mian, “Hyperspectral face recognition using 3D-DCT and partial least squares.” in Proc. of British Machine Vision Conf. (BMVC), Sept 2013, pp. 1–10. [145] D. Chen, Q. Liu, M. Sun, and J. Yang, “Mining appearance models directly from compressed video,” IEEE Trans. on Multimedia, vol. 10, no. 2, pp. 268–276, Feb 2008. [146] Y. Zhong, H. Zhang, and A. K. Jain, “Automatic caption localization in compressed video,” IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), vol. 22, no. 4, pp. 385–392, Apr 2000. [147] W. Pennerbaker and J. Mithchell, JPEG: Still image data compression standard. Springer Science & Business Media, 1992. [148] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix factorization and sparse coding,” J. Mach. Learn. Res., vol. 11, pp. 19–60, Mar 2010. [149] http://faculty.ucmerced.edu/mhyang/project/cvpr12_jia_project.htm. Accessed: Oct, 2013. [150] https://github.com/chhshen/DCT-Tracking. Accessed: Dec, 2013. [151] S. Cao, X. Wang, and K. Xiang, “Visual object tracking based on motion-adaptive particle filter under complex dynamics,” EURASIP J. on Image and Video Processing, vol. 2017, no. 1, p. 76, 2017. [152] B. K. Shreyamsha Kumar, M.N.S. Swamy, and M. Omair Ahmad, “Visual tracking based on correlation filter and robust coding in bilateral 2DPCA subspace,” IEEE Access, vol. 6, pp. 73 052–73 067, 2018. [153] S. A. Siena, “Improving the design and use of correlation filters in visual tracking,” Ph.D. dissertation, Carnegie Mellon University, Dept. Elect. Comput. Eng, USA, 2017. [154] B. Bai, Y. Li, J. Fan, C. Price, and Q. Shen, “Object tracking based on incremental Bi-2DPCA learning with sparse structure,” Applied optics, vol. 54, no. 10, pp. 2897–2907, Apr 2015. [155] Y. Sui, Y. Tang, L. Zhang, and G. Wang, “Visual tracking via subspace learning: A discriminative approach,” Int. J. of Comput. Vision, vol. 126, no. 5, pp. 515–536, 2018. [156] Y. Sui, G. Wang, L. Zhang, and M.-H. Yang, “Exploiting spatial-temporal locality of tracking via structured dictionary learning,” IEEE Trans. on Image Processing, vol. 27, no. 3, pp. 1282–1296, Mar 2018. [157] Y. Sui and L. Zhang, “Visual tracking via locally structured Gaussian process regression,” IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1331–1335, Feb 2015. [158] Y. Sui, Y. Tang, and L. Zhang, “Discriminative low-rank tracking,” in Proc. of the IEEE Int. Conf. on Comput. Vision, Dec 2015, pp. 3002–3010. [159] https://scholar.harvard.edu/files/suiyao/files/ddl.zip . Accessed: Apr, 2018. [160] https://scholar.harvard.edu/files/suiyao/files/dlr.zip . Accessed: Apr, 2018. [161] https://scholar.harvard.edu/files/suiyao/files/lsgpr.zip . Accessed: Apr, 2018. [162] https://scholar.harvard.edu/files/suiyao/files/dsl.zip . Accessed: Apr, 2018. [163] http://www.cvl.isy.liu.se/research/objrec/visualtracking/colvistrack/ColorTracking_code.zip. Accessed: Jun, 2015. [164] http://www.robots.ox.ac.uk/~joao/circulant/tracker_release2.zip. Accessed: Jun, 2015.