1. A. Criminisi, J. Shotton, E. Konukoglu, "Decision forests: A unified framework for classification regression density estimation manifold learning and semi-supervised learning", Found. Trends Comput. Graph. Vis., vol. 7, no. 3, pp. 81-227, Feb. 2012. 2. E. Ricci, R. Perfetti, "Retinal blood vessel segmentation using line operators and support vector classification", IEEE Trans. Med. Imag., vol. 26, no. 10, pp. 1357-1365, Oct. 2007. 3. I. El-Naqa, Y. Yang, M. N. Wernick, N. P. Galatsanos, R. M. Nishikawa, "A support vector machine approach for detection of microcalcifications", IEEE Trans. Med. Imag., vol. 21, no. 12, pp. 1552-1563, Dec. 2002. 4. H. P. Ng, S. H. Ong, K. W. C. Foong, P. S. Goh, W. L. Nowinski, "Medical image segmentation using k-means clustering and improved watershed algorithm", Proc. IEEE Southwest Symp. Image Anal. Interpretation, pp. 61-65, Mar. 2006. 5. E. I. Zacharaki, Sumei Wang, S. Chawla, D. S. Yoo, R. Wolf, E. R. Melhem, C. Davatzikos, "Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme", Magn. Reson. Med., vol. 62, no. 6, pp. 1609-1618, Dec. 2009. 6. B. N. Li, C. K. Chui, S. Chang, S. H. Ong, "Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation", Comput. Biol. Med., vol. 41, no. 1, pp. 1-10, 2011. 7. R. J. Martis, C. Chakraborty, A. K. Ray, "A two-stage mechanism for registration and classification of ECG using Gaussian mixture model", Pattern Recognit., vol. 42, no. 11, pp. 2979-2988, Nov. 2009. 8. A. Krizhevsky, I. Sutskever, G. E. Hinton, "ImageNet classification with deep convolutional neural networks", Proc. NIPS, pp. 1097-1105, Dec. 2012. 9. K. He, X. Zhang, S. Ren, J. Sun, "Deep residual learning for image recognition", Proc. IEEE CVPR, pp. 770-778, Jun. 2016. 10. S. Sabour, N. Frosst, G. E. Hinton, "Dynamic routing between capsules", Proc. Adv. Neural Inf. Process. Syst., pp. 3859-3869, 2017. 11. G. E. Hinton, A. Krizhevsky, S. D. Wang, T. Honkela, W. Duch, M. Girolami, S. Kaski, "Transforming auto-encoders" in Artificial Neural Networks and Machine Learning, Berlin, Germany:Springer, pp. 44-51, 2011. 12. P. Rajpurkar, J. Irvin, A. Bagul, D. Ding, T. Duan, H. Mehta, B. Yang, K. Zhu, D. Laird, R. L. Ball, C. Langlotz, K. Shpanskaya, M. P. Lungren, A. Y. Ng, "MURA: Large dataset for abnormality detection in musculoskeletal radiographs", Proc. 1st Conf. Med. Imag. Deep Learn. (MIDL), pp. 1-10, 2017, [online] Available: https://arxiv.org/abs/1712.06957. 13. P. Afshar, A. Mohammadi, K. N. Plataniotis, "Brain tumor type classification via capsule networks", arXiv:1802.10200, Mar. 2018, [online] Available: https://arxiv.org/abs/1802.10200. 14. R. LaLonde, U. Bagci, "Capsules for object segmentation", arXiv:1804.04241, Apr. 2018, [online] Available: https://arxiv.org/abs/1804.04241. 15. A. Mittal, A. K. Moorthy, A. C. Bovik, "No-reference image quality assessment in the spatial domain", IEEE Trans. Image Process., vol. 21, no. 12, pp. 4695-4708, Dec. 2012. 16. A. Mittal, R. Soundararajan, A. C. Bovik, "Making a ‘completely blind’ image quality analyzer", IEEE Signal Process. Letters., vol. 20, no. 3, pp. 209-212, Mar. 2013. 17. J. Sim, C. C. Wright, "The kappa statistic in reliability studies: Use interpretation and sample size requirements", Phys. Therapy, vol. 85, no. 3, pp. 257-268, Mar. 2005. 18. A. J. Viera, J. M. Garrett, "Understanding interobserver agreement: The kappa statistic", Fam Med, vol. 37, no. 5, pp. 360-363, 2005. 19. G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger, "Densely connected convolutional networks", arXiv:1608.06993, Sep. 2016, [online] Available: https://arxiv.org/abs/1608.06993. 20. L. Berlin, "Liability of interpreting too many radiographs", Amer. J. Roentgenol., vol. 175, no. 1, pp. 17-22, 2000. 21. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, "Imagenet: A large-scale hierarchical image database", Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 248-255, Jun. 2009. 22. W. Gale, L. Oakden-Rayner, G. Carneiro, A. P. Bradley, L. J. Palmer, "Detecting hip fractures with radiologist-level performance using deep neural networks", arXiv:1711.06504, Nov. 2017, [online] Available: https://arxiv.org/abs/1711.06504. 23. D. P. Kingma, J. Ba, "Adam: A method for stochastic optimization", arXiv:1412.6980, Dec. 2014, [online] Available: https://arxiv.org/abs/1412.6980. 24. B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, "Learning deep features for discriminative localization", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 2921-2929, Jun. 2016. 25. A. D. Woolf, B. Pflege, "Burden of major musculoskeletal conditions", Bull. World Health Org., vol. 81, no. 9, pp. 646-656, 2003. 26. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, Cambridge, MA, USA:MIT Press, 2016.