[1] Belzunce, F., Guillamon, A., Navarro, J., and Ruiz, J. M. (2001) Kernel esitmation of residual entropy. Communications in Statistics-Theory and Methods 30:1243-1255. [2] Bouzebda, S., Elhattab, I., Keziou, A., and Lounis, T. (2013) New entropy estimator with an application to test of normality. Communication in Statistics-Theory and Methods 42:2245-2270. [3] Bouezmarni, T. and Scaillet, O. (2005) Consitency of asymmetric kernel density estimators and smoothed histograms with application to income data. Econometric Theory 21:390-412. [4] Chaubey, Y. P., Mudholkar, G. S. and Smethurst, P. A. (1993). On entropy-based goodness-of-fit tests: a practical strategy. In Probability and Statistics, S. K. Basu and B. K. Sinha, eds., Narosa Publishing House, New Delhi, 116-120. [5] Chaubey, Y. P. and Sen, P. K. (2009). On The Selection Of The Smoothing Parameter In Poisson Smoothing Of Histogram Estimator: Computational Aspects. Pakistan Journal of Statistics 25(4): 385-401. [6] Chaubey, Y. P, Sen, P., and Li, J. (2010) Smooth density estimation for length-biased data. Journal of The Indian Society of Agricultural Statistics 64(2):145-155. [7] Cheng, C. and Parzen, E. (1997) Unified estimators of smooth quantile and quantile density funnc- tions. Journal of Statistical Planning and Inference 59:291-307. [8] Correa, J. C. (1995). A new estimator of entropy. Communications in Statistics: Theory and Methods 24:2439-2449. [9] Cover, T. M. and Thomas J. A. (1991). Elements of Information Theory. Wiley, New York, USA. [10] Ebrahimi, N., Habibullah, M., and Soofi, E. (1992) Testing exponentiality based on KullbackLeibler information. Journal of the Royal Statistical Society: Series B, 54:739-748. [11] Ebrahimi, N. (1996). How to measure uncertainty in the life time distributions. The Indian Journal of Statistics Series A 58:48-56. [12] Eggermont, P.B. and LaRiccia V. N. (1999). Best Asymptotic Normality of the Kernel Density Entropy Estimator for Smooth Densities. IEEE Transactions On Information Theory 45:1321-1326 [13] Hall, P. and Morton, S. C. (1993). On the estimation of entropy. Ann. Inst. Statist. Math. 45:69-88. [14] Kapur, J. N. (1993). Maximum Entropy Models in Science and Engineering. John Wiley & Sons, Inc., New York, USA. [15] Kapur, J. N., Kesavan, H. K. (1992). Entropy optimization principles with applications. Academic press, Inc., New York. [16] Noughabi, H. A. (2010). A new estimator of entropy and its application in testing normality.Journal of Statistical Computation And Simulation 80:1151-1162. [17] Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation 15:1191- 1253. [18] Shannon, C.E. (1948). A mathematical theory of ommunication. Bell System Tech. J. 27:379-423 & 623-656. [19] Van Es, B. (1992). Estimating functionals related to a density by a class of statistics based on spacings. Scandinavian Journal of Statistics 19:61-72. [20] Vasicek, O. (1976). A test for normality based on sample entropy. Journal of the Royal Statistical Society 38:54-59. [21] Wieczorkowski, R. and Grzegorzewski, P. (1999). Entropy estimators improvements and comparisons. Communications in Statistics-Simulation and Computation 28(2):541-567.