[1] Chen, Jia, Juewen Liu, Xingguo Chen, and Hongdeng Qiu. "Recent progress in nanomaterial-enhanced fluorescence polarization/anisotropy sensors." Chinese Chemical Letters (2019). [2] Dormeny, A. A., Sohi, P. A., Grudin, D., & Kahrizi, M. (2019). Development of low voltage gas ionization tunneling sensor based on p-type ZnO nanostructures. Sensors and Actuators A: Physical, 299, 111627. [3] Ullah, N., Mansha, M., Khan, I., & Qurashi, A. (2018). Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. TrAC Trends in Analytical Chemistry, 100, 155-166. [4] G. S. KorotÄenkov, Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications. New Trends and Technologies. 2014. [5] Yin, M. J., Gu, B., An, Q. F., Yang, C., Guan, Y. L., & Yong, K. T. (2018). Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications. Coordination Chemistry Reviews, 376, 348-392. [6] J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chem. Rev., vol. 108, (2), pp. 462-493, 2008. [7] A. K. Sharma, A. K. Pandey and B. Kaur, "A review of advancements (2007–2017) in plasmonics-based optical fiber sensors," Optical Fiber Technology, vol. 43, pp. 20-34, 2018. [8] M. Loos, "Chapter 1 - Nanoscience and Nanotechnology," pp. 1-36, 2015. . DOI: https://doi.org/10.1016/B978-1-4557-3195-4.00001-1. [9] Anonymous "British Museum Database Image," . [10] K. Chang, "Tiny is Beautiful: Translating 'Nano' Into Practical," New York Times 22 Feb 2005: Science, . [11] B. D. Gupta and R. Kant, "Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures," Optics & Laser Technology, vol. 101, pp. 144-161, 2018. [12] A. K. Sharma, R. Jha and B. Gupta, "Fiber-optic sensors based on surface plasmon resonance: a comprehensive review," IEEE Sensors Journal, vol. 7, (8), pp. 1118-1129, 2007. [13] D. Michel, F. Xiao and K. Alameh, "A compact, flexible fiber-optic Surface Plasmon Resonance sensor with changeable sensor chips," Sensors Actuators B: Chem., vol. 246, pp. 258-261, 2017. [14] E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," Zeitschrift für Naturforschung A, vol. 23, (12), pp. 2135-2136, 1968. [15] Mishra, S. K., Tripathi, S. N., Choudhary, V., & Gupta, B. D. (2014). SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sensors and Actuators B: Chemical, 199, 190-200. [16] H. Raether, "Surface plasmons on smooth surfaces," in Surface Plasmons on Smooth and Rough Surfaces and on GratingsAnonymous 1988, . [17] Z. Han and S. I. Bozhevolnyi, "Radiation guiding with surface plasmon polaritons," Reports on Progress in Physics, vol. 76, (1), pp. 016402, 2012. [18] S. Nivedha, P. R. Babu and K. Senthilnathan, "Surface plasmon resonance: physics and technology." Current Science (00113891), vol. 115, (1), 2018. [19] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices. 340. [20] U. Kreibig and M. Vollmer, "Theoretical considerations," in Optical Properties of Metal ClustersAnonymous 1995, . [21] Amendola, V., Pilot, R., Frasconi, M., Maragò, O. M., & Iatì, M. A. (2017). Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter, 29(20), 203002. [22] S. Szunerits, J. Spadavecchia and R. Boukherroub, "Surface plasmon resonance: signal amplification using colloidal gold nanoparticles for enhanced sensitivity," Reviews in Analytical Chemistry, vol. 33, (3), pp. 153-164, 2014. [23] A. S. Rubio, Modified Au-Based Nanomaterials Studied by Surface Plasmon Resonance Spectroscopy. 2015. [24] M. A. Garcìa, "Surface plasmons in metallic nanoparticles: fundamentals and applications," J. Phys. D, vol. 44, (28), pp. 283001, 2011. [25] C. Noguez, "Surface plasmons on metal nanoparticles: the influence of shape and physical environment," The Journal of Physical Chemistry C, vol. 111, (10), pp. 3806-3819, 2007. [26] C. F. Bohren and D. R. Huffman, "Absorption and Scattering of," Light by Small, 1983. [27] Stuart, D. A., Haes, A. J., Yonzon, C. R., Hicks, E. M., & Van Duyne, R. P. (2005, February). Biological applications of localised surface plasmonic phenomenae. In IEE Proceedings-Nanobiotechnology (Vol. 152, No. 1, pp. 13-32). IET Digital Library. [28] S. A. Maier, Plasmonics: Fundamentals and Applications. 2007. [29] Pang, L., Hwang, G. M., Slutsky, B., & Fainman, Y. (2007). Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor. Applied Physics Letters, 91(12), 123112. [30] I. Dolev, I. Epstein and A. Arie, "Surface-plasmon holographic beam shaping," Phys. Rev. Lett., vol. 109, (20), pp. 203903, 2012. [31] M. Couture, S. S. Zhao and J. Masson, "Modern surface plasmon resonance for bioanalytics and biophysics," Physical Chemistry Chemical Physics, vol. 15, (27), pp. 11190-11216, 2013. [32] R. B. Sadeghian, A Field Effect Gas Sensor Based on Self-Standing Nanowire Arrays, 2007. [33] P. Abedini Sohi, Self-Standing Silicon Nanostructures Fabricated using Chemical/Electrochemical Technique: Application in Gas Field Ionization Tunneling Sensor, 2019. [34] S. Zuccon, "Plasmonics and near field optics for sensing purposes," 2010. [35] Huang, Y., Zhong, S., Shi, T., Shen, Y. C., & Cui, D. (2019). HR-Si prism coupled tightly confined spoof surface plasmon polaritons mode for terahertz sensing. Optics Express, 27(23), 34067-34078. [36] A. Paliwal, M. Tomar and V. Gupta, "Refractive index sensor using long-range surface plasmon resonance with prism coupler," Plasmonics, vol. 14, (2), pp. 375-381, 2019. [37] Saito, Y., Yamamoto, Y., Kan, T., Tsukagoshi, T., Noda, K., & Shimoyama, I. (2019). Electrical detection SPR sensor with grating coupled backside illumination. Optics express, 27(13), 17763-17770. [38] R. Mahmood, M. Johnson and A. C. Hillier, "Massive Enhancement of Optical Transmission across a Thin Metal Film via Wave Vector Matching in Grating-Coupled Surface Plasmon Resonance," Anal. Chem., 2019. [39] E. Babaei, Z. Sharifi and R. Gordon, "Improving sensitivity of existing surface plasmon resonance systems with grating-coupled short-range surface plasmons," Josa B, vol. 36, (8), pp. F144-F148, 2019. [40] Zhang, H., Geng, Y., Xu, S., Xu, W., Tian, Y., Yu, J., ... & Liu, Y. (2019). Surface Plasmon Field-Enhanced Raman Scattering based on Evanescent Field Excitation of Waveguide-Coupled Surface Plasmon Resonance Configuration. The Journal of Physical Chemistry C. [41] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik A Hadrons and Nuclei, vol. 216, (4), pp. 398-410, 1968. [42] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 2013. [43] R. B. Schasfoort, Handbook of Surface Plasmon Resonance. 2017. [44] B. Gupta, A. Shrivastav and S. Usha, "Surface plasmon resonance-based fiber optic sensors utilizing molecular imprinting," Sensors, vol. 16, (9), pp. 1381, 2016. [45] A. Sato, "Surface Plasmon Fluorescence Spectroscopy and Optical Waveguide Fluorescence Spectroscopy in Limit of Detection Studies," Max Planck Institute for Polymer Research, Johannes Gutenberg University of Mainz, Mainz.Master Thesis, 2006. [46] A. P. Hibbins, "Grating coupling of surface plasmon polaritons at visible and microwave frequencies," 2000. [47] J. Homola and M. Piliarik, "Surface plasmon resonance (SPR) sensors," in Surface Plasmon Resonance Based SensorsAnonymous 2006, . [48] Piliarik, M., Vala, M., Tichý, I., & Homola, J. (2009). Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons. Biosensors and Bioelectronics, 24(12), 3430-3435. [49] R. Harris and J. S. Wilkinson, "Waveguide surface plasmon resonance sensors," Sensors Actuators B: Chem., vol. 29, (1-3), pp. 261-267, 1995. [50] Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive optical biosensors for unlabeled targets: A review. analytica chimica acta, 620(1-2), 8-26. [51] A. Urrutia, J. Goicoechea and F. J. Arregui, "Optical fiber sensors based on nanoparticle-embedded coatings," Journal of Sensors, vol. 2015, 2015. [52] Yakubovsky, D. I., Arsenin, A. V., Stebunov, Y. V., Fedyanin, D. Y., & Volkov, V. S. (2017). Optical constants and structural properties of thin gold films. Optics express, 25(21), 25574-25587. [53] A. A. Dormeny, P. A. Sohi and M. Kahrizi, "Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures," Results in Physics, vol. 16, pp. 102869, 2020. [54] L. Novotny and B. Hecht, Principles of Nano-Optics. 2012. [55] Yim, Soonmin, Suwan Jeon, Jong Min Kim, Kwang Min Baek, Gun Ho Lee, Hyowook Kim, Jonghwa Shin, and Yeon Sik Jung. "Transferrable plasmonic au thin film containing sub-20 nm nanohole array constructed via high-resolution polymer self-assembly and nanotransfer printing." ACS applied materials & interfaces 10, no. 3 (2018): 2216-2223. [56] J. Homola, S. S. Yee and G. Gauglitz, "Surface plasmon resonance sensors," Sensors Actuators B: Chem., vol. 54, (1-2), pp. 3-15, 1999. [57] A. K. Sharma and B. Gupta, "On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors," J. Appl. Phys., vol. 101, (9), pp. 093111, 2007. [58] Kaminska, Izabela, Thomas Maurer, Rana Nicolas, Mickaël Renault, Thomas Lerond, Rafael Salas-Montiel, Ziad Herro et al. "Near-field and far-field sensitivities of LSPR sensors." The Journal of Physical Chemistry C 119, no. 17 (2015): 9470-9476. [59] Suzuki, H., Sugimoto, M., Matsui, Y., & Kondoh, J. (2008). Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor. Sensors and Actuators B: Chemical, 132(1), 26-33. [60] M. Iga, A. Seki and K. Watanabe, "Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor," Sensors Actuators B: Chem., vol. 106, (1), pp. 363-368, 2005. [61] T. Read, R. V. Olkhov and A. M. Shaw, "Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method," Physical Chemistry Chemical Physics, vol. 15, (16), pp. 6122-6127, 2013. [62] Lee, Wei Cheat, Yuanxing Fang, John FC Turner, Jasbir S. Bedi, Christopher C. Perry, Heyong He, Rong Qian, and Qiao Chen. "An enhanced gas ionization sensor from Y-doped vertically aligned conductive ZnO nanorods." Sensors and Actuators B: Chemical 237 (2016): 724-732. [63] G. Korotcenkov, "Handbook of gas sensor materials," in Conventional ApproachesAnonymous 2013, . [64] P. A. Sohi and M. Kahrizi, "Low-voltage gas field ionization tunneling sensor using silicon nanostructures," IEEE Sensors Journal, vol. 18, (15), pp. 6092-6096, 2018. [65] R. B. Sadeghian and M. Kahrizi, "A novel miniature gas ionization sensor based on freestanding gold nanowires," Sensors and Actuators A: Physical, vol. 137, (2), pp. 248-255, 2007. [66] R. B. Sadeghian and M. Kahrizi, "A novel gas sensor based on tunneling-field-ionization on whisker-covered gold nanowires," IEEE Sensors Journal, vol. 8, (2), pp. 161-169, 2008. [67] S. Spitsina and M. Kahrizi, "Application of single-crystalline N-type and P-type ZnO nanowires in miniaturized gas ionization sensor," Sensors and Materials, vol. 28, (1), pp. 43-54, 2016. [68] S. Spitsina and M. Kahrizi, "ZnO crystalline nanowires array for application in gas ionization sensor," in IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, 2012, . [69] R. G. Forbes, C. Edgcombe and U. Valdre, "Some comments on models for field enhancement," Ultramicroscopy, vol. 95, pp. 57-65, 2003. [70] N. Chivu and M. Kahrizi, "Modeling and simulation of a miniaturized gas ionization sensor: Detection of greenhouse gases," Sensors & Transducers, vol. 153, (6), pp. 105, 2013. [71] Wahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007). Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials Research Bulletin, 42(9), 1640-1648. [72] Shao, S., Jia, P., Liu, S., & Bai, W. (2008). Stable field emission from rose-like zinc oxide nanostructures synthesized through a hydrothermal route. Materials Letters, 62(8-9), 1200-1203. [73] Givargizov, E. I., Zhirnov, V. V., Stepanova, A. N., Rakova, E. V., Kiselev, A. N., & Plekhanov, P. S. (1995). Microstructure and field emission of diamond particles on silicon tips. Applied surface science, 87, 24-30.