References [1] Ahmad, I.A. and Lin, P.E. (1989). A nonparametric estimation of the entropy for absolutely continuous distributions. IEEE Trans. Inform. Theory, 36, 688-692. [2] Bagai, I. and Prakasa Rao, B.L.S. (1996). Kernel type density estimates for positive valued random variables. Sankhya Ser. A, 57, 56-67. [3] Beirlant, J., Dudewicz, E.J., Gyorfi, L.,van de Meulen, E.C. (1997). Nonparametric entropy estimation. An overview. International Journal of Mathematical and Statistical Sciences, 6, 17-39. [4] Bouezmarni, T. and Scaillet, O. (2005). Consistency of asymmetric kernel density estimators and smoothed histograms with application to income data. Econometric Theory, 21, 390-412. [5] Bouzebda, S., Elhattab, I., Keziou, A., and Lounis, T. (2013). New entropy estimator with an application to test of normality. Communication in Statistics-Theory and Methods, 42, 2245-2270. [6] Chaubey, Y.P., Li, J., Sen, A. and Sen, P.K. (2012). A new smooth density estimator for non-negative random variables. Journal of the Indian Statistical Association, 50, 83-104. [7] Chaubey, Y.P. and Mudholkar, G.S. (2013). A rationale for maximizing likelihood and related alternatives to maximum likelihood estimator. Investigations in Mathematical Sciences, 3, 1-15. [8] Chaubey, Y.P. and Sen, P.K. (1996). On smooth estimation of survival and density functions. Statistics and Decisions, 14, 1{22. [9] Chaubey, Y.P. and Sen, P.K. (2009). On the selection of the smoothing parameter in Poisson smoothing of histogram estimator: Computational aspects. Pakistan Journal of Statistics, 25, 385-401. [10] Chaubey, Y.P., Sen, P.K. and Li, J. (2010). Smooth density estimation for length-biased data. Journal of The Indian Society of Agricultural Statistics, 64, 145-155. [11] Chen, S.X. (2000). Probability Density Function Estimation Using Gamma Kernels. Annals of the Institute of Statistical Mathematics, 52, 471-480. [12] Cheng, C. and Parzen, E. (1997). Unibiased estimators of smooth quantile and quantile density funnctions. Journal of Statistical Planning and Inference, 59, 291-307. [13] Cover, T.M. and Thomas, J.A. (1991). Elements of Information Theory, Wiley, New York. [14] Eggermont, P.P.B. and LaRiccia, V.N. (1999). Best asymptotic normality of the kernel density entropy estimator for smooth densities. IEEE Transactions On Information Theory, 45, 1321-1324. [15] Gyorfi, L. and van der Meulen, E.C. (1987). Density-free convergence properties of various estimators of the entropy. Comput. Statist. Data Anal., 5, 425-436. [16] Gyorfi, L. and van der Meulen, E.C. (1990). An entropy estimate based on a kernel density estimation, Colloq. Math. Soc. J. Bolyai no. 57. In Limit Theorems in Probability and Statistics, I. Berkes, E. Csaki and P. Revesz, Eds., North-Holland: Amsterdam, The Netherlands. [17] Hall, P. and Morton, S.C. (1993). On the estimation of entropy. Ann. Inst. Statist. Math., 45, 69-88. [18] Jaynes, E.T. (1957a). Information theory and statistical mechanics-I. The Physical Review, 106, 620-630. [19] Jaynes, E.T. (1957b). Information theory and statistical mechanics-II. The Physical Review, 108, 171-190. [20] Karunamuni, R.J. and Alberts, T. (2005). On boundary correction in kernel density estimation. Statistical Methodology, 2, 191-212. [21] Scaillet, O. (2004). Density estimation using inverse and reciprocal inverse Gaussian kernels. Nonparametric Statistics, 16, 217-226. [22] Shannon, C.E. (1948). A mathematical theory of communication. Bell System Tech. J., 27, 379-423. Reprinted in C. E . Shannon and W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, Urbana. [23] Shwartz, S., Zibulevsky, M. and Schechner, Y.Y. (2005). Fast kernel entropy estimation and optimization. Signal Processing, 85, 1045-1058. [24] Van Es, B. (1992). Estimating functionals related to a density by a class of statistics based on spacings. Scandinavian Journal of Statistics, 19, 61-72. [25] Vasicek, O. (1976). A test for normality based on sample entropy. Journal of the Royal Statistical Society, 38, 54-59.