Almroth, E., Tengberg, A., Andersson, J. H., Pakhomova, S., & Hall, P. O. J. (2009). Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea. Continental Shelf Research, 29(5–6), 807–818. https://doi.org/10.1016/j.csr.2008.12.011 ASTM. (2002). Standard test methods for determining sediment concentration in water samples. American National Standard. ASTM D 2974-00. (2011). “Standard Test Methods for Moisture, Ash , and Organic Matter of Peat and Other Organic Soils.” Annual Book of ASTM Standards. https://doi.org/10.1520/D2974-07A.2 Bartram, J., & Ballance, R. (1996). Water Quality Monitoring - A Practical Guide to the Design and Implementation of Freshwater. Quality Studies and Monitoring Programmes, 1–348. https://doi.org/http://dx.doi.org/10.1016/S1553-4650(13)01241-7 Belmont, M. A., White, J. R., & Reddy, K. R. (2009). Phosphorus Sorption and Potential Phosphorus Storage in Sediments of Lake Istokpoga and the Upper Chain of Lakes, Florida, USA. Journal of Environmental Quality. https://doi.org/10.2134/jeq2007.0532 Bharti, N., & Katyal, D. (2011). Water Quality Indices Used for Surface Water Vulnerability Assessment. International Journal of Environmental Sciences, 2, 173. Blond, E., Veermersch, O., & Diederich, R. (2015). A Comprehensive Analysis of the Measurement Techniques used to Determine Geotextile Opening Size: AOS,FOS,O90,and Bubble Point. Geosynthetics 2015, Portland. Canet, R., Chaves, C., Pomares, F., & Albiach, R. (2003). Agricultural use of sediments from the Albufera Lake (eastern Spain). Agriculture, Ecosystems and Environment, 95(1), 29–36. https://doi.org/10.1016/S0167-8809(02)00171-8 CCME. (2002). Canadian water quality guidelines for the protection of aquatic life: Total particulate matter. In Canadian environmental quality guidelines (pp. 1–13). Winnipeg. Chapman, D. (1996). Water Quality Assessments - A Guide to Use of Biota , Sediments and Water in Environmental Monitoring - Second Edition Edited by. Childs, J. L., Abney, A., & Young, M. (2005). Beneficial Reuse of Dredged Material-The Regulatory Approach. Remediation of Contaminated Sediments, (3), B3-02. Chorus, Ingrid & Bartram, J. (1999). Toxic cyanobacteria in water. A guide to their public health consequences, monitoring, and management / edited by Ingrid Chorus and Jamie Bertram. World Health Organization. Correll, D. L. (1999). Phosphorus: A rate limiting nutrient in surface waters. Poultry Science, 78(5), 674–682. https://doi.org/10.1093/ps/78.5.674 Correll, David L. (1998). The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. Journal of Environmental Quality, 27(2), 261–266. https://doi.org/10.2134/jeq1998.00472425002700020004x Ellison, M. E., & Brett, M. T. (2006). Particulate phosphorus bioavailability as a function of stream flow and land cover. Water Research, 40(6), 1258–1268. https://doi.org/10.1016/j.watres.2006.01.016 Environment and Climate Change Canada. (2019). Canadian Environmental Sustainability Indicators: Water quality in Canadian rivers. Environmental Protection Agency. (2014). Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems, 1–11. Retrieved from https://www.epa.gov/sites/production/files/2014-08/documents/cyanobacteria_factsheet.pdf Fred Lee, G., Rast, W., & Jones, R. A. (1978). Eutrophication of water bodies: Insights for an age-old problem. Environmental Science and Technology, 12(8), 900–908. https://doi.org/10.1021/es60144a606 Fukue, M., Uehara, K., Sato, Y., & Mulligan, C. (2012). Re-Suspension Technique for Improving Organic Rich Sediment-Water Quality in a Shallow Sea Area. Marine Georesources and Geotechnology, 30(3), 222–233. https://doi.org/10.1080/1064119X.2011.614321 Gu, B. W., Lee, C. G., Lee, T. G., & Park, S. J. (2017). Evaluation of sediment capping with activated carbon and nonwoven fabric mat to interrupt nutrient release from lake sediments. Science of the Total Environment, 599–600, 413–421. https://doi.org/10.1016/j.scitotenv.2017.04.212 Hickey, C. W., & Gibbs, M. M. (2009). Lake sediment phosphorus release management-Decision support and risk assessment framework. New Zealand Journal of Marine and Freshwater Research, 43(3), 819–856. https://doi.org/10.1080/00288330909510043 Jacobs, P., & Förstner, U. (2001). Managing contaminated sediments: IV. Subaqueous storage and capping of dredged material. Journal of Soils and Sediments, 1(4), 205–212. https://doi.org/10.1007/BF02987726 Jacobs, P. H., & Förstner, U. (1999). Concept of subaqueous capping of contaminated sediments with active barrier systems (ABS) using natural and modified zeolites. Water Research, 33(9), 2083–2087. https://doi.org/10.1016/S0043-1354(98)00432-1 Jensen, H. S., Kristensen, P., Jeppesen, E., & Skytthe, A. (1992). Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia. https://doi.org/10.1007/BF00026261 Jiang, X., Jin, X., Yao, Y., Li, L., & Wu, F. (2008). Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Research, 42(8–9), 2251–2259. https://doi.org/10.1016/j.watres.2007.12.003 Jones, J. G., Simon, B. M., & Roscoe, J. V. (1982). Microbiological Sources of Sulphide in Freshwater Lake Sediments. Microbiology, 128(12), 2833–2839. https://doi.org/10.1099/00221287-128-12-2833 Junakova, N., & Junak, J. (2019). Alternative reuse of bottom sediments in construction materials: Overview. IOP Conference Series: Materials Science and Engineering, 549(1). https://doi.org/10.1088/1757-899X/549/1/012038 Karim, Rifat A., Mulligan, C. N., & Fukue, M. (2012). Preliminary Evaluation of a Sediment Resuspension Technique for Reduction of Phosphorus in Lake Water. Contaminated Sediments: 5th Volume, Restoration of Aquatic Environment, (November), 1–21. https://doi.org/10.1520/stp20120052 Karim, Rifat Ara. (2010). Improvement of Lake Water Quality Using Sediment Resuspension. Kim, G., Jeong, W., Choi, S., & Khim, J. (2007). Sand capping for controlling phosphorus release from lake sediments. Environmental Technology, 28(4), 381–389. https://doi.org/10.1080/09593332808618801 Lee, G. F., Sonzogni, W. C., & Spear, R. D. (1976). Significance of Oxic vs Anoxic Conditions for Lake Mendota Sediment Phosphorus Release. In Interactions between sediments and fresh water. https://doi.org/10.1007/978-94-011-9802-8_43 Lin, J., Zhong, Y., Fan, H., Song, C., Yu, C., Gao, Y., … Liu, J. (2017). Chemical treatment of contaminated sediment for phosphorus control and subsequent effects on ammonia-oxidizing and ammonia-denitrifying microorganisms and on submerged macrophyte revegetation. Environmental Science and Pollution Research, 24(1), 1007–1018. https://doi.org/10.1007/s11356-016-7828-1 Manap, N., & Voulvoulis, N. (2015). Environmental management for dredging sediments - The requirement of developing nations. Journal of Environmental Management, 147, 338–348. https://doi.org/10.1016/j.jenvman.2014.09.024 Mohamad, K. A., Mohd, S. Y., Sarah, R. S., Mohd, H. Z., & Rasyidah, A. (2017). Total nitrogen and total phosphorus removal from brackish aquaculture wastewater using effective microorganism. AIP Conference Proceedings, 1885(1), 020127. https://doi.org/10.1063/1.5002321 Moreira, C. D., Scapini, T., Muller, S., Amroginski, J., Golunski, S., Pandolfi, L., … Treichel, H. (2018). Production of compounds by phytopathogenic fungi for biological control of aquatic macrophytes. Bioresource Technology Reports, 3(May), 22–26. https://doi.org/10.1016/j.biteb.2018.05.012 Morgan, M. D. (1985). Photosynthetically elevated pH in acid waters with high nutrient content and its significance for the zooplankton community. Hydrobiologia, 128(3), 239–247. https://doi.org/10.1007/BF00006820 Mulligan, C., Fukue, M., & Sato, Y. (2009). Sediments contamination and sustainable remediation. Sediments Contamination and Sustainable Remediation, CRC Press, Boca Raton. https://doi.org/10.1201/9781420062236 Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). An evaluation of technologies for the heavy metal remediation of dredged sediments. Journal of Hazardous Materials, 85(1–2), 145–163. https://doi.org/10.1016/S0304-3894(01)00226-6 Murphy, T. P., Lawson, A., Kumagai, M., & Babin, J. (1999). Review of emerging issues in sediment treatment. Aquatic Ecosystem Health and Management, 2(4), 419–434. https://doi.org/10.1080/14634989908656980 Palakkeel Veetil, D., Ghasri, M., Mulligan, C. N., & Bhat, S. (2019a). In-situ removal of algae and suspended solids from a eutrophic lake using non-woven geotextiles. 16th International Environmental Specialty Conference 2018, Held as Part of the Canadian Society for Civil Engineering Annual Conference 2018, 98–106. Palakkeel Veetil, D., Ghasri, M., Mulligan, C. N., & Bhat, S. (2019b). Use of non-woven geotextiles for improving water quality of a eutrophic lake: An in-situ study. Proceedings, Annual Conference - Canadian Society for Civil Engineering, 2019-June, 1–8. Parnell, J., McMahon, S., & Boyce, A. (2018). Demonstrating deep biosphere activity in the geological record of lake sediments, on Earth and Mars. International Journal of Astrobiology, 17(4), 380–385. https://doi.org/10.1017/S1473550417000337 Pourabadehei, M., & Mulligan, C. N. (2016a). Effect of the resuspension technique on distribution of the heavy metals in sediment and suspended particulate matter. Chemosphere, 153, 58–67. https://doi.org/10.1016/j.chemosphere.2016.03.026 Pourabadehei, M., & Mulligan, C. N. (2016b). Geochemical and physical characteristics of contaminated sediment in a harbour area. The 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, 1893–1898. https://doi.org/10.3208/jgssp.OTH-19 Pourabadehei, M., & Mulligan, C. N. (2016c). Resuspension of sediment, a new approach for remediation of contaminated sediment. Environmental Pollution, 213, 63–75. https://doi.org/10.1016/j.envpol.2016.01.082 Pourabadehei, M., & Mulligan, C. N. (2016d). Selection of an appropriate management strategy for contaminated sediment: A case study at a shallow contaminated harbour in Quebec, Canada. Environmental Pollution, 219, 846–857. https://doi.org/10.1016/j.envpol.2016.08.012 Qin, B., Yang, L., Chen, F., Zhu, G., Zhang, L., & Chen, Y. (2006). Mechanism and control of lake eutrophication. Chinese Science Bulletin, 51(19), 2401–2412. https://doi.org/10.1007/s11434-006-2096-y Rahman, A. K. M. M., & Al Bakri, D. (2018). Phosphorus cycling between sediment and overlying water in Ben chifely reservoir, Australia under simulated core incubation. Environment and Natural Resources Journal, 16(2), 11–19. https://doi.org/10.14456/ennrj.2018.11 Renberg, I. (1986). Concentration and annual accumulation values of heavy metals in lake sediments: Their significance in studies of the history of heavy metal pollution. Hydrobiologia. https://doi.org/10.1007/BF00026686 Renholds, J. (1998). In Situ Treatment of Contaminated Sediments, 33pp. Retrieved from https://scholar.google.ca/scholar?cluster=17887006071312252665&hl=en&as_sdt=2005&sciodt=0,5#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A-X7Sn0BpO_gJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26scfhb%3D1%26hl%3Den Roberts, D. A. (2012). Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments. Environment International, 40(1), 230–243. https://doi.org/10.1016/j.envint.2011.11.013 Ruban, V., López-Sánchez, J. F., Pardo, P., Rauret, G., Muntau, H., & Quevauviller, P. (2001). Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments - A synthesis of recent works. Analytical and Bioanalytical Chemistry, (Portland, Oregon). https://doi.org/10.1007/s002160100753 Sarma, S., Mulligan, C. N., Kim, K., Veetil, D. P., & Bhat, S. (2016). Use of nonwoven geotextiles for removing nutrients and suspended solids from a eutrophic lake. Proceedings, Annual Conference - Canadian Society for Civil Engineering, 2, 1061–1071. Selig, U. (2003). Particle size-related phosphate binding and P-release at the sediment-water interface in a shallow German lake. Hydrobiologia, 492, 107–118. https://doi.org/10.1023/A:1024865828601 Sinclair, T. R. (2002). Terrestrial Global Productivity. Crop Science. https://doi.org/10.2135/cropsci2002.0657 Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506(1–3), 135–145. https://doi.org/10.1023/B:HYDR.0000008611.12704.dd Søndergaard, M., Kristensen, P., & Jeppesen, E. (1992). Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arresø, Denmark. Hydrobiologia, 228(1), 91–99. https://doi.org/10.1007/BF00006480 Spohn, M., & Kuzyakov, Y. (2013). Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology and Biochemistry, 61, 69–75. https://doi.org/10.1016/j.soilbio.2013.02.013 Strauss, E. A., Mitchell, N. L., & Lamberti, G. A. (2002). Factors regulating nitrification in aquatic sediments: Effects of organic carbon, nitrogen availability, and pH. Canadian Journal of Fisheries and Aquatic Sciences, 59(3), 554–563. https://doi.org/10.1139/f02-032 Thomas, R., Meybeck, M., & Beim, A. (1996). Chapter 7: Lakes, Water Quality Assessment - A Guide to Use of Biota, Sediments and Water in Environmental Monitoring. Water Quality Assesments - A Giude to Use Biota, Sediments and Water in Environmental Monitoring, 5, 1–46. Retrieved from http://www.who.int/water_sanitation_health/resourcesquality/wqachapter7.pdf Veetil, D. P., Mulligan, C. N., & Bhat, S. (2019). Phosphorus speciation of sediments of a mesoeutrophic lake in Quebec, Canada. Environmental Science and Engineering. https://doi.org/10.1007/978-981-13-2221-1_88 Wang, Liangkai, Shao, X., Xu, M., & Chen, S. (2019). Bioremediation of nitrogen-and phosphorus-polluted aquaculture sediment by utilizing combined immobilized effective microorganisms and sediment aeration technology. International Journal of Agricultural and Biological Engineering, 12(6), 192–201. https://doi.org/10.25165/j.ijabe.20191206.4904 Wang, Lizhi, Liu, Q., Hu, C., Liang, R., Qiu, J., & Wang, Y. (2018). Phosphorus release during decomposition of the submerged macrophyte Potamogeton crispus. Limnology, 19(3), 355–366. https://doi.org/10.1007/s10201-018-0538-2 Wang, S., Jin, X., Pang, Y., Zhao, H., & Zhou, X. (2005). The study of the effect of pH on phosphate sorption by different trophic lake sediments. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2004.08.039 Welch, E. B., & Cooke, G. D. (2005). Internal phosphorus loading in shallow lakes: Importance and control. Lake and Reservoir Management, 21(2), 209–217. https://doi.org/10.1080/07438140509354430 Wu, Y., Wen, Y., Zhou, J., & Wu, Y. (2014). Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen. KSCE Journal of Civil Engineering. https://doi.org/10.1007/s12205-014-0192-0 Yong, R. N., Mulligan, C. N., & Fukue, M. (2014). Sustainable practices in geoenvironmental engineering. Sustainable Practices in Geoenvironmental Engineering, Second Edition. CRC Press, Boca Raton. https://doi.org/10.1201/b17443 Yoobanpot, N., Jamsawang, P., Simarat, P., Jongpradist, P., & Likitlersuang, S. (2020). Sustainable reuse of dredged sediments as pavement materials by cement and fly ash stabilization. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-020-02635-x Zurawell, R. W. (2015). Toxic cyanobacteria. In J. Bartram (Ed.), Routledge Handbook of Water and Health (pp. 98–106). New York: Routledge, 2015. https://doi.org/10.4324/9781315693606