[1] A. J. McCormick, P. Bombelli, R. W. Bradley, R. Thorne, T. Wenzel, and C. J. Howe, “Biophotovoltaics: Oxygenic photosynthetic organisms in the world of bioelectrochemical systems,” Energy and Environmental Science, vol. 8, no. 4, pp. 1092–1109, 2015. [Online]. Available: http://dx.doi.org/10.1039/C4EE03875D [2] M. A. Masadeh, K. Kuruvinashetti, M. Shahparnia, P. Pillay, and M. Packirisamy, “Electrochemical Modeling and Equivalent Circuit Representation of a Microphotosynthetic Power Cell,” IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1561–1571, 2017. [3] J. D. Park and Z. Ren, “High efficiency energy harvesting from microbial fuel cells using a synchronous boost converter,” Journal of Power Sources, vol. 208, pp. 322–327, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.jpowsour.2012.02.035 [4] T. Yamashita, Y. Takahashi, and Y. Takakura, “Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application,” Biological and Pharmaceutical Bulletin, vol. 41, no. 6, pp. 835–842, 2018. [5] M. R. Sorrel S , Speirs J, Bentley R, Brandt A, “Global Oil depletion: an asement of the evidence for a near -term peak in global oil production,” pp. ISBN number: 1–903 144–0–35, 2009. [6] M. S. Dresselhaus and I. L. Thomas, “Alternative energy technologies,” Nature, vol. 414, no. 6861, pp. 332–337, 2001. [7] A. Hussain, S. M. Arif, and M. Aslam, “Emerging renewable and sustainable energy technologies: State of the art,” Renewable and Sustainable Energy Reviews, vol. 71, no. June 2015, pp. 12–28, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2016.12.033 288 [8] NASA, “Climate Science Investigations South Florida - Energy: The Driver of Climate.” [Online]. Available: http://www.ces.fau.edu/nasa/module-2/energy-budget.php [9] B. Ke, “P430 : a retrospective , 1971 – 2001,” no. 1966, pp. 207–214, 2002. [10] A. J. McCormick, P. Bombelli, A. M. Scott, A. J. Philips, A. G. Smith, A. C. Fisher, and C. J. Howe, “Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system,” Energy and Environmental Science, vol. 4, no. 11, pp. 4699–4709, 2011. [11] A. A. Carmona-Mart´ınez, F. Harnisch, U. Kuhlicke, T. R. Neu, and U. Schroder, “Electron ¨ transfer and biofilm formation of Shewanella putrefaciens as function of anode potential,” Bioelectrochemistry, vol. 93, pp. 23–29, 2013. [Online]. Available: http://dx.doi.org/10.1016/j. bioelechem.2012.05.002 [12] B. E. Logan, “Exoelectrogenic bacteria that power microbial fuel cells,” Nature Reviews Microbiology, vol. 7, no. 5, pp. 375–381, 2009. [13] M. Shahparnia, M. Packirisamy, P. Juneau, and V. Zazubovich, “Micro photosynthetic power cell for power generation from photosynthesis of algae,” Technology, vol. 03, no. 02n03, pp. 119–126, 2015. [Online]. Available: http://www.worldscientific.com/doi/abs/10.1142/S2339547815400099 [14] K. B. Lam, E. F. Irwin, K. E. Healy, and L. Lin, “Bioelectrocatalytic self-assembled thylakoids for micro-power and sensing applications,” Sensors and Actuators, B: Chemical, vol. 117, no. 2, pp. 480–487, 2006. [15] A. V. Ramanan, S. Member, and M. Pakirisamy, “Advanced Fabrication , Modeling , and Testing of a Microphotosynthetic Electrochemical Cell for Energy Harvesting Applications,” IEEE Transactions on Power Electronics, vol. 30, no. 3, pp. 1275–1285, 2015. [16] P. Bombelli, T. Muller, T. W. Herling, C. J. Howe, and T. P. Knowles, “A high power-density, ¨ mediator-free, microfluidic biophotovoltaic device for cyanobacterial cells,” Advanced Energy Materials, vol. 5, no. 2, pp. 1–6, 2015. [17] M. Sawa, A. Fantuzzi, P. Bombelli, C. J. Howe, K. Hellgardt, and P. J. Nixon, “Electricity generation from digitally printed cyanobacteria,” Nature Communications, vol. 8, no. 1, pp. 1–9, dec 2017. [Online]. Available: http://www.nature.com/articles/s41467-017-01084-4