[1] Alam, M. M., Barsoum, Z., Jonsén, P., Kaplan, A. F. H., & Häggblad, H. Å. (2010). The influence of surface geometry and topography on the fatigue cracking behaviour of laser hybrid welded eccentric fillet joints. Applied Surface Science, 256(6), 1936–1945. https://doi.org/10.1016/j.apsusc.2009.10.041 [2] AL-Emarani, M., & Åkesson, B. (2013). Steel Structures [Thesis]. Chalmers University of Technology. [3] Al-Emrani, M., & Åkesson, B. (2013). Steel structures: Course literature–VSM 191 [Course Literature]. [4] Ashcroft, I. A. (2011). Fatigue Load Conditions. In L. F. M. da Silva, A. Öchsner, & R. D. Adams (Eds.), Handbook of Adhesion Technology (pp. 845–874). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-01169-6_33 [5] ASTM E2860. (2012). Test Method for Residual Stress Measurement by X-Ray Diffraction for Bearing Steels. ASTM International. https://doi.org/10.1520/E2860-12 [6] ASTM, S. E. (1823). Standard terminology relating to fatigue and fracture testing-Annual Book of ASTM Standards. (Vol. 1–96). American Society for Testing and Materials, West Conshohocken. [7] BANNANTINE, J., COMER, J., & Handrock, J. (1990). Fundamentals of metal fatigue analysis (Vol. 1–286). Englewood Cliffs, NJ, Prentice Hall. [8] Barsoum, Z., & Jonsson, B. (2011). Influence of weld quality on the fatigue strength in seam welds. Engineering Failure Analysis, 18(3), 971–979. https://doi.org/10.1016/j.engfailanal.2010.12.001 [9] Bhat, S., & Patibandla, R. (2011). Metal Fatigue and Basic Theoretical Models: A Review. In Alloy Steel-Properties and Use. IntechOpen. [10] Bhaumik, S. K., Sujata, M., & Venkataswamy, M. A. (2008). Fatigue failure of aircraft components. Engineering Failure Analysis, 15(6), 675–694. https://doi.org/10.1016/j.engfailanal.2007.10.001 [11] Broek, D. (1986). Elementary engineering fracture mechanics. Springer Netherlands. https://doi.org/10.1007/978-94-009-4333-9 [12] BS EN 15305. (2008). Non-destructive Testing—Test Method for Residual Stress analysis by X-ray Diffraction. British Standards Institution. [13] Bueckner, H. F. (1970). NOVEL PRINCIPLE FOR THE COMPUTATION OF STRESS INTENSITY FACTORS. Zeitschrift Fuer Angewandte Mathematik & Mechanik, 50(9), 529–546. [14] Caccese, V., Blomquist, P. A., Berube, K. A., Webber, S. R., & Orozco, N. J. (2006). Effect of weld geometric profile on fatigue life of cruciform welds made by laser/GMAW processes. Marine Structures, 19(1), 1–22. https://doi.org/10.1016/j.marstruc.2006.07.002 [15] Castillo-Morales, M., & Salas-Zamarripa, A. (2010). The Effects of UIT in the Fatigue Life of Al 2024-T3. Key Engineering Materials, 449, 15–22. https://doi.org/10.4028/www.scientific.net/KEM.449.15 [16] Chattopadhyay, A., Glinka, G., El-Zein, M., Qian, J., & Formas, R. (2011). Stress Analysis and Fatigue of welded structures. Welding in the World, 55(7–8), 2–21. https://doi.org/10.1007/BF03321303 [17] Cui, C., Zhang, Q., Bao, Y., Kang, J., & Bu, Y. (2018). Fatigue performance and evaluation of welded joints in steel truss bridges. Journal of Constructional Steel Research, 148, 450–456. https://doi.org/10.1016/j.jcsr.2018.06.014 [18] Deng, D., & Murakawa, H. (2006). Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Computational Materials Science, 37(3), 269–277. https://doi.org/10.1016/j.commatsci.2005.07.007 [19] Dowling, N. E. (2013). Mechanical behavior of materials: Engineering methods for deformation, fracture, and fatigue (4th ed). Pearson. [20] Dowling, N. E., Siva Prasad, K., & Narayanasamy, R. (2013). Mechanical behavior of materials: Engineering methods for deformation, fracture, and fatigue (4. ed., internat. ed). Pearson. [21] Dürr, A. (2007). Zur Ermüdungsfestigkeit von Schweißkonstruktionen aus höherfesten Baustählen bei Anwendung von UIT-Nachbehandlung. https://doi.org/10.18419/OPUS-265 [22] EUROPE TECHNOLOGIES SONATS. (2020). Innovative Impact Surface Treatment Solutions. SONATS. https://sonats-et.com/en/ [23] Farajian, M., Barsoum, Z., Weich, I., & Nitschke-Pagel, T. (2012). A literature survey on residual stress related fatigue strength improvement techniques for welded components and structures. (IIW Doc XIII-WG6-008-12). International Institute of Welding. https://www.researchgate.net/publication/293756150_A_Literature_Survey_on_Residual_Stress_Related_Fatigue_Strength_Improvement_Techniques_for_Welded_Components_and_Structures [24] Farajian, M., Nitschke-Pagel, T., & Lieurade, H. P. (2012). Farajian, M., Nitschke-Pagel, T., & Lieurade, H. P. (2012). Shot peening as a tool for fatigue strength improvement of welds: A review. (IIW Doc XIII-WG6-009-12). International Institute of Welding. https://www.researchgate.net/publication/293756131_Shot_Peening_as_a_tool_for_fatigue_strength_improvement_of_welds_a_review [25] Farajian-Sohi, M., Nitschke-Pagel, T., & Dilger, K. (2010). Residual Stress Relaxation of Quasi-Statically and Cyclically-Loaded Steel Welds. Welding in the World, 54(1–2), R49–R60. https://doi.org/10.1007/BF03263484 [26] Fisher, J. W., Statnikov, E. S., & Tehini, L. (2001). Fatigue strength enhancement by means of weld design change and the application of ultrasonic impact treatment. In Proc. of Intl. Symp. on Steel Bridges, Chicago. [27] Fong, & J., T. (1979). Fatigue mechanisms. ASTM International. [28] Forman, R. G., Kearney, V. E., & Engle, R. M. (1967). Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures. Journal of Basic Engineering, 89(3), 459–463. https://doi.org/10.1115/1.3609637 [29] Fricke, W. (2012). IIW recommendations for the fatigue assessment of welded structures by notch stress analysis. WP, Woodhead Publ. [30] Fricke, W. (2013). IIW guideline for the assessment of weld root fatigue. Welding in the World, 57(6), 753–791. https://doi.org/10.1007/s40194-013-0066-y [31] Frost, N. E., Marsh, K. J., & Pook, L. P. (1974). Metal fatigue. Clarendon Press. [32] Ghahremani, K. (2015). Fatigue assessment of repaired highway bridge welds using local approaches. Doctoral Thesis [Doctoral Thesis]. University of Waterloo. [33] Ghahremani, Kasra, Ranjan, R., Walbridge, S., & Ince, A. (2015). Fatigue Strength Improvement of Aluminum and High Strength Steel Welded Structures using High Frequency Mechanical Impact Treatment. Procedia Engineering, 133, 465–476. https://doi.org/10.1016/j.proeng.2015.12.616 [34] Ghahremani, Kasra, Walbridge, S., & Topper, T. (2015). High cycle fatigue behaviour of impact treated welds under variable amplitude loading conditions. International Journal of Fatigue, 81, 128–142. https://doi.org/10.1016/j.ijfatigue.2015.07.022 [35] Glinka, G., & Shen, G. (1991). Universal features of weight functions for cracks in mode I. Engineering Fracture Mechanics, 40(6), 1135–1146. https://doi.org/10.1016/0013-7944(91)90177-3 [36] Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical Transactions B, 15(2), 299–305. https://doi.org/10.1007/BF02667333 [37] Griffith, A. A. (1921). Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character. 221, 163–198. [38] Gurney, T. R., & Saunders, H. (1981). Fatigue of Welded Structures (2nd Edition). Journal of Engineering Materials and Technology, 103(2), 185–185. https://doi.org/10.1115/1.3224993 [39] Haagensen, P. J. (2011). Fatigue strength improvement methods. In Fracture and Fatigue of Welded Joints and Structures (pp. 297–329). Elsevier. https://doi.org/10.1533/9780857092502.2.297 [40] Haagensen, P., Statnikov, E. S., & López-Martínez, L. (1998). Introductory fatigue tests on welded joints in high strength steel and aluminium improved by various methods including ultrasonic impact treatment ( UIT ). IIW, 13, 1748–1798. [41] Hadley, I. (2018). BS 7910:2013 in brief. International Journal of Pressure Vessels and Piping, 165, 263–269. https://doi.org/10.1016/j.ijpvp.2018.07.010 [42] Harati, E. (2015). Fatigue strength of welds in 800 MPa yield strength steels: Effects of weld toe geometry and residual stress. University West. [43] Harrison, J. D. (1970). ANALYSIS OF DATA ON NON-PROPAGATING FATIGUE CRACKS ON A FRACTURE MECHANICS BASIS. Metal Constr. Brit. Weld. J. 2: 93-8(Mar 1970), 2(3), 24–26. [44] Hellan, K. (1984). Introduction to fracture mechanics. McGraw-Hill. [45] Hobbacher, A. (2012). Update of the fracture mechanics chapters of the IIW fatigue design recommendations. International Institute of Welding; IIW-document XIII-2370r1-11/XV-1376r1-11. [46] Hobbacher, A. F. (2016). Recommendations for Fatigue Design of Welded Joints and Components (2nd ed. 2016). Springer International Publishing : Imprint: Springer. https://doi.org/10.1007/978-3-319-23757-2 [47] Irwin, G. R. (1948). Fracturing of metals. ASM, Cleveland, 147(19–9). [48] Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack transversing a plate. Trans. ASME, Ser. E, J. Appl. Mech., 24, 361–364. [49] James, M. N., Hughes, D. J., Chen, Z., Lombard, H., Hattingh, D. G., Asquith, D., Yates, J. R., & Webster, P. J. (2007). Residual stresses and fatigue performance. Engineering Failure Analysis, 14(2), 384–395. https://doi.org/10.1016/j.engfailanal.2006.02.011 [50] Jonsson, B., Samuelsson, J., & Marquis, G. B. (2011). Development of Weld Quality Criteria Based on Fatigue Performance. Welding in the World, 55(11–12), 79–88. https://doi.org/10.1007/BF03321545 [51] Joshua, H. M. (2014). Fatigue Crack Growth Analysis with Finite Element Methods and a Monte Carlo Simulation [Virginia Polytechnic Institute and State University]. https://vtechworks.lib.vt.edu/bitstream/handle/10919/48432/Melson_JH_T_2014.pdf?sequence=1&isAllowed=y [52] Josi, G., & Grondin, G. Y. (2010). Reliability-based management of fatigue failures [Doctoral Thesis]. University of Alberta. [53] Khurshid, M., Barsoum, Z., & Marquis, G. (2014). Behavior of Compressive Residual Stresses in High Strength Steel Welds Induced by High Frequency Mechanical Impact Treatment. Journal of Pressure Vessel Technology, 136(4), 041404. https://doi.org/10.1115/1.4026651 [54] Kirkhope, K. J., Bell, R., Caron, L., Basu, R. I., & Ma, K.-T. (1999a). Weld detail fatigue life improvement techniques. Part 1: Review. Marine Structures, 12(6), 447–474. https://doi.org/10.1016/S0951-8339(99)00013-1 [55] Kirkhope, K. J., Bell, R., Caron, L., Basu, R. I., & Ma, K.-T. (1999b). Weld detail fatigue life improvement techniques. Part 2: Application to ship structures. Marine Structures, 12(7–8), 477–496. https://doi.org/10.1016/S0951-8339(99)00031-3 [56] Kudryavtsev, Y., Mikheev, P., & Korshun, V. (1995). Influence of plastic deformation and residual stresses, created by ultrasonic impact treatment, on the fatigue strength of welded joints. Paton Welding Journal, 12, 3–7. [57] Kudryavtsev, Yuri, & Kleiman, J. (2013). Fatigue Improvement of Welded Elements and Structures by Ultrasonic Peening. Volume 6A: Materials and Fabrication, V06AT06A060. https://doi.org/10.1115/PVP2013-97185 [58] Kuhlmann, U., Dürr, A., Bergmann, J., Thumser, R., & Forschungsvereinigung Stahlanwendung (Eds.). (2006). Effizienter Stahlbau aus höherfesten Stählen unter Ermüdungsbeanspruchung =: Fatigue strength improvement for welded high strength steel connections due to the application of post-weld treatment methods. Verl.- und Vertriebsges. [59] Kuhlmann, Ulrike, Bergmann, J., Dürr, A., Thumser, R., Günther, H.-P., & Gerth, U. (2005). Erhöhung der Ermüdungsfestigkeit von geschweißten höherfesten Baustählen durch Anwendung von Nachbehandlungsverfahren. Stahlbau, 74(5), 358–365. https://doi.org/10.1002/stab.200590066 [60] Lampman, S. R., & DiMatteo, N. D. (1996). ASM handbook: Volume 19, fatigue and fracture. (Vol. 1–19). ASM International. [61] Lassen, T., & Recho, N. (2006). Fatigue life analyses of welded structures. http://www.books24x7.com/marc.asp?bookid=13832 [62] Lee, C.-H., Chang, K.-H., Jang, G.-C., & Lee, C.-Y. (2009). Effect of weld geometry on the fatigue life of non-load-carrying fillet welded cruciform joints. Engineering Failure Analysis, 16(3), 849–855. https://doi.org/10.1016/j.engfailanal.2008.07.004 [63] Leitner, M., Barsoum, Z., & Schäfers, F. (2016). Crack propagation analysis and rehabilitation by HFMI of pre-fatigued welded structures. Welding in the World, 60(3), 581–592. https://doi.org/10.1007/s40194-016-0316-x [64] Leitner, M., Gerstbrein, S., Ottersböck, M. J., & Stoschka, M. (2015). Fatigue Strength of HFMI-treated High-strength Steel Joints under Constant and Variable Amplitude Block Loading. Procedia Engineering, 101, 251–258. https://doi.org/10.1016/j.proeng.2015.02.036 [65] Leitner, M., Khurshid, M., & Barsoum, Z. (2017). Stability of high frequency mechanical impact (HFMI) post-treatment induced residual stress states under cyclic loading of welded steel joints. Engineering Structures, 143, 589–602. https://doi.org/10.1016/j.engstruct.2017.04.046 [66] Lihavainen, V.-M. (2006). A novel approach for assessing the fatigue strenght of ultrasonic impact treated welded structures. Lappeenrannan Teknillinen Yliopisto. [67] Lotsberg, I., Fjeldstad, A., Helsem, M. R., & Oma, N. (2014). Fatigue life improvement of welded doubling plates by grinding and ultrasonic peening. Welding in the World, 58(6), 819–830. https://doi.org/10.1007/s40194-014-0161-8 [68] Maddox, S. J. (2002). Fatigue Strength of Welded Structures. Elsevier. https://doi.org/10.1016/C2013-0-17455-7 [69] Marquis, G. B., & Barsoum, Z. (2016). IIW Recommendations for the HFMI Treatment. Springer Singapore. https://doi.org/10.1007/978-981-10-2504-4 [70] Marquis, G. B., Mikkola, E., Yildirim, H. C., & Barsoum, Z. (2013). Fatigue strength improvement of steel structures by high-frequency mechanical impact: Proposed fatigue assessment guidelines. Welding in the World, 57(6), 803–822. https://doi.org/10.1007/s40194-013-0075-x [71] Martinsferreira, J., & Mourabranco, C. (1989). Influence of the radius of curvature at the weld toe in the fatigue strength of fillet welded joints. International Journal of Fatigue, 11(1), 29–36. https://doi.org/10.1016/0142-1123(89)90044-3 [72] Mishchenko, A., Wu, L., da Silva, V. K., & Scotti, A. (2018). Analysis of residual stresses resulting from the surface preparation for X-ray diffraction measurement. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(2), 94. https://doi.org/10.1007/s40430-018-1036-5 [73] Mosiello, A., & Kostakakis, K. (2013). The benefits of Post Weld Treatment for cost efficient and sustainable bridge design. Chalmers University of Technology. [74] NDT Eduation Resource Center. (2014). NDT Eduation Resource Center. https://www.nde-ed.org/index_flash.htm [75] Nieslony, A., Dsoki, C., Kaufmann, H., & Krug, P. (2008). New method for evaluation of the Manson–Coffin–Basquin and Ramberg–Osgood equations with respect to compatibility. International Journal of Fatigue, 30(10–11), 1967–1977. https://doi.org/10.1016/j.ijfatigue.2008.01.012 [76] Niu, X., & Glinka, G. (1987). The weld profile effect on stress intensity factors in weldments. International Journal of Fracture, 35(3), 20. [77] Noroozi, A., Glinka, G., & Lambert, S. (2007). A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force. International Journal of Fatigue, 29(9–11), 1616–1633. https://doi.org/10.1016/j.ijfatigue.2006.12.008 [78] Pang, H. (1993). Analysis of weld toe profiles and weld toe cracks. International Journal of Fatigue, 15(1), 31–36. https://doi.org/10.1016/0142-1123(93)90074-Z [79] Paris, P., & Erdogan, F. (1963). A Critical Analysis of Crack Propagation Laws. Journal of Basic Engineering, 85(4), 528–533. https://doi.org/10.1115/1.3656900 [80] Paul, S. P. (1986). X-Ray Diffraction Residual Stress Techniques. In R. E. Whan (Ed.), Materials Characterization (pp. 380–392). ASM International. https://doi.org/10.31399/asm.hb.v10.a0001761 [81] Pearson, S. (1966). Fatigue Crack Propagation in Metals. Nature, 211(5053), 1077–1078. https://doi.org/10.1038/2111077a0 [82] Peeker, E. (1997). Extended numerical modeling of fatigue behavior. https://doi.org/10.5075/EPFL-THESIS-1617 [83] Radaj, D. (1995). Ermüdungsfestigkeit: Grundlagen für Leichtbau. Maschinen-und Stahlbau. SpringerVerlag. [84] Radhi, H. E., & Barrans, S. (2010). FINITE ELEMENT ANALYSIS OF EFFECT OF WELD TOE RADIUS AND PLATE THICKNESS ON FATIGUE LIFE OF BUTT WELDED JOINT. 60–64. http://eprints.hud.ac.uk/id/eprint/9316 [85] Ranjan, R., Ghahremani, K., Walbridge, S., & Ince, A. (2016). Testing and fracture mechanics analysis of strength effects on the fatigue behavior of HFMI-treated welds. Welding in the World, 60(5), 987–999. https://doi.org/10.1007/s40194-016-0354-4 [86] Richard, H. A., & Sander, M. (2016). Fatigue Crack Growth (Vol. 227). Springer International Publishing. https://doi.org/10.1007/978-3-319-32534-7 [87] Ritchie, R. O. (1999). [No title found]. International Journal of Fracture, 100(1), 55–83. https://doi.org/10.1023/A:1018655917051 [88] Rodopoulos, C. A., Kermanidis, A. Th., Statnikov, E., Vityazev, V., & Korolkov, O. (2007). The Effect of Surface Engineering Treatments on the Fatigue Behavior of 2024-T351 Aluminum Alloy. Journal of Materials Engineering and Performance, 16(1), 30–34. https://doi.org/10.1007/s11665-006-9004-0 [89] Rossini, N. S., Dassisti, M., Benyounis, K. Y., & Olabi, A. G. (2012). Methods of measuring residual stresses in components. Materials & Design, 35, 572–588. https://doi.org/10.1016/j.matdes.2011.08.022 [90] Roy, S. (2003). Fatigue resistance of welded details enhanced by ultrasonic impact treatment (UIT). International Journal of Fatigue, 25(9–11), 1239–1247. https://doi.org/10.1016/S0142-1123(03)00151-8 [91] Roy, S., & Fisher, J. W. (2005). Enhancing fatigue strength by ultrasonic impact treatment. International Journal of Steel Structures. International Journal of Steel Structures, 5(3), 241–252. [92] Schaumann, P., & Collmann, M. (2013). Influence of Weld Defects on the Fatigue Resistance of Thick Steel Plates. Procedia Engineering, 66, 62–72. https://doi.org/10.1016/j.proeng.2013.12.062 [93] Schijve, J. (2001). Fatigue of structures and materials. Kluwer Academic. [94] Schijve, J. (2008). Fatigue of Structures and Materials. Springer Science & Business Media. https://doi.org/10.1007/0-306-48396-3 [95] Seto, A., Masuda, T., Machida, S., & Miki, C. (2000). Very low cycle fatigue properties of butt welded joints containing weld defects. Study of acceptable size of defects in girth welds of gas pipelines. Welding International, 14(1), 26–34. https://doi.org/10.1080/09507110009549134 [96] Shams-Hakimi, P. (2017). Performance of high-frequency mechanical impact treatment for bridge application [Doctoral dissertation, Department of Architecture and Civil Engineering, Chalmers University of Technology]. https://core.ac.uk/download/pdf/84870083.pdf [97] Shams-Hakimi, Poja, Zamiri, F., Al-Emrani, M., & Barsoum, Z. (2018). Experimental study of transverse attachment joints with 40 and 60 mm thick main plates, improved by high-frequency mechanical impact treatment (HFMI). Engineering Structures, 155, 251–266. https://doi.org/10.1016/j.engstruct.2017.11.035 [98] Sharpe, W. N. (2008). Springer handbook of experimental solid mechanics. Springer. [99] Shirahata, H., Miki, C., Yamaguchi, R., Kinoshita, K., & Yaginuma, Y. (2014). Fatigue crack detection by the use of ultrasonic echo height change with crack tip opening. Welding in the World, 58(5), 681–690. https://doi.org/10.1007/s40194-014-0149-4 [100] Sidhom, N., Laamouri, A., Fathallah, R., Braham, C., & Lieurade, H. (2005). Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: Experimental characterization and predictive approach. International Journal of Fatigue, 27(7), 729–745. https://doi.org/10.1016/j.ijfatigue.2005.02.001 [101] Sonsino, C. (2009). Effect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometry. International Journal of Fatigue, 31(1), 88–101. https://doi.org/10.1016/j.ijfatigue.2008.02.015 [102] Statnikov, A. S. (2000). Applications of operational ultrasonic impact treatment (UIT) technologies in production of welded joints. WELDING IN THE WORLD-LONDON, 44(3), 11–21. [103] Statnikov, E. S., Muktepavel, V. O., & Blomqvist, A. (2002). Comparison of Ultrasonic Impact Treatment (UIT) and Other Fatigue Life Improvement Methods. Welding in the World, 46(3–4), 20–32. https://doi.org/10.1007/BF03266368 [104] Statnikov, E.Sh. (1997b). Comparison of post-weld deformation methods for increase in fatigue strength of welded joints. IIW. Doc. XIII-1668-97. [105] Stephens, R. I., Fatemi, A., Stephens, R. R., & Fuchs, H. O. (2001). Metal Fatigue in Engineering. John Wiley and Sons. Inc., New York. [106] Stoschka, M., Leitner, M., Posch, G., & Eichlseder, W. (2013). Effect of high-strength filler metals on the fatigue behaviour of butt joints. Welding in the World, 57(1), 85–96. https://doi.org/10.1007/s40194-012-0010-6 [107] Stoschka, Michael, Di Leitner, M., Fössl, T., & Posch, G. (2012). Effect of High-Strength Filler Metals on Fatigue. Welding in the World, 56(3–4), 20–29. https://doi.org/10.1007/BF03321332 [108] Suresh, S. (1998). Fatigue of materials (2nd ed). Cambridge University Press. [109] Tada, H., Paris, P. C., & Irwin, G. R. (1973). The stress analysis of cracks handbook, Del Research Corp. [110] Tang, L., Ince, A., & Zheng, J. (2018). Numerical Simulation of Residual Stresses in Welding and Ultrasonic Impact Treatment Process. In P. Ferro & F. Berto (Eds.), Residual Stress Analysis on Welded Joints by Means of Numerical Simulation and Experiments. InTech. https://doi.org/10.5772/intechopen.72394 [111] Tang, L., Ince, A., & Zheng, J. (2020). Numerical modeling of residual stresses and fatigue damage assessment of ultrasonic impact treated 304L stainless steel welded joints. Engineering Failure Analysis, 108, 104277. https://doi.org/10.1016/j.engfailanal.2019.104277 [112] Tehrani Yekta, R., Ghahremani, K., & Walbridge, S. (2013). Effect of quality control parameter variations on the fatigue performance of ultrasonic impact treated welds. International Journal of Fatigue, 55, 245–256. https://doi.org/10.1016/j.ijfatigue.2013.06.023 [113] Teng, T.-L., Fung, C.-P., & Chang, P.-H. (2002). Effect of weld geometry and residual stresses on fatigue in butt-welded joints. International Journal of Pressure Vessels and Piping, 79(7), 467–482. https://doi.org/10.1016/S0308-0161(02)00060-1 [114] Vaidya, W. V. (1985). Fatigue crack propagation under a microstructural gradient in a plain carbon steel. Scripta Metallurgica, 19(5), 597–602. https://doi.org/10.1016/0036-9748(85)90344-8 [115] Walker, K. (1970). The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum. In M. Rosenfeld (Ed.), Effects of Environment and Complex Load History on Fatigue Life (pp. 1-1–14). ASTM International. https://doi.org/10.1520/STP32032S [116] Wallbrink, C., Peng, D., Jones, R., & Dayawansa, P. H. (2006). Predicting the fatigue life and crack aspect ratio evolution in complex structures. Theoretical and Applied Fracture Mechanics, 46(2), 128–139. https://doi.org/10.1016/j.tafmec.2006.07.004 [117] Webster, G. A., & Ezeilo, A. N. (2001). Residual stress distributions and their influence on fatigue lifetimes. International Journal of Fatigue, 23, 375–383. https://doi.org/10.1016/S0142-1123(01)00133-5 [118] Weich, I., Ummenhofer, T., Nitschke-Pagel, T., Dilger, K., & Eslami Chalandar, H. (2009). Fatigue Behaviour of Welded High-Strength Steels after High Frequency Mechanical Post-Weld Treatments. Welding in the World, 53(11–12), R322–R332. https://doi.org/10.1007/BF03263475 [119] Weman, K. (2003). Welding processes handbook. CRC Press. [120] Williams, H. E., Ottsen, H., Lawence, F. V., & Munse, W. H. (1970). The Effects Of Weld Geometry On The Fatigue Behavior Of Welded Connrctions. University of Illinois Engineering Experiment Station. College of Engineering. University of Illinois at Urbana-Champaign. http://hdl.handle.net/2142/14783 [121] Withers, P. J., & Bhadeshia, H. K. D. H. (2001a). Residual stress. Part 1 – Measurement techniques. Materials Science and Technology, 17(4), 355–365. https://doi.org/10.1179/026708301101509980 [122] Withers, P. J., & Bhadeshia, H. K. D. H. (2001b). Residual stress. Part 2 – Nature and origins. Materials Science and Technology, 17(4), 366–375. https://doi.org/10.1179/026708301101510087 [123] Wright, W. (1996). Post-weld Treatment of A Welded Bridge Girder by Ultrasonic Hammer Peening (p. 6). [124] Yildirim, H. C., & Marquis, G. B. (2012). Fatigue strength improvement factors for high strength steel welded joints treated by high frequency mechanical impact. International Journal of Fatigue, 44, 168–176. https://doi.org/10.1016/j.ijfatigue.2012.05.002 [125] Yildirim, H. C., & Marquis, G. B. (2013). A round robin study of high-frequency mechanical impact (HFMI)-treated welded joints subjected to variable amplitude loading. Welding in the World. https://doi.org/10.1007/s40194-013-0045-3 [126] Yuan, K. L., & Sumi, Y. (2015). Modelling of ultrasonic impact treatment (UIT) of welded joints and its effect on fatigue. Frattura Ed Integrità Strutturale, 9, 34. [127] Zerbst, U., Ainsworth, R. A., Beier, H. Th., Pisarski, H., Zhang, Z. L., Nikbin, K., Nitschke-Pagel, T., Münstermann, S., Kucharczyk, P., & Klingbeil, D. (2014). Review on fracture and crack propagation in weldments – A fracture mechanics perspective. Engineering Fracture Mechanics, 132, 200–276. https://doi.org/10.1016/j.engfracmech.2014.05.012 [128] Zheng, J., Ince, A., & Tang, L. (2018). Modeling and simulation of weld residual stresses and ultrasonic impact treatment of welded joints. Procedia Engineering, 213, 36–47. https://doi.org/10.1016/j.proeng.2018.02.005