1. Meirovitch, L., Elements of Vibration Analysis, MacGraw Hill. Inc., New York, NY, 1986: p. 290-296. 2. Kim, H.K., H.S. Kim, and Y.-K. Kim, Stiffness control of magnetorheological gels for adaptive tunable vibration absorber. Smart Materials and Structures, 2016. 26(1): p. 015016. 3. Sun, S., et al., An adaptive tuned vibration absorber based on multilayered MR elastomers. Smart materials and structures, 2015. 24(4): p. 045045. 4. Susheelkumar, G., S. Murigendrappa, and K. Gangadharan, Theoretical and experimental investigation of model-free adaptive fuzzy sliding mode control for MRE based adaptive tuned vibration absorber. Smart Materials and Structures, 2019. 28(4): p. 045017. 5. Selvaraj, R. and M. Ramamoorthy, Recent developments in semi-active control of magnetorheological materials-based sandwich structures: A review. Journal of Thermoplastic Composite Materials, 2020: p. 0892705720930749. 6. Abe, M. and T. Igusa, Semi-active dynamic vibration absorbers for controlling transient response. Journal of Sound and Vibration, 1996. 198(5): p. 547-569. 7. Jalili, N. and E. Esmailzadeh, Adaptive-passive structural vibration attenuation using distributed absorbers. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2002. 216(3): p. 223-235. 8. Franchek, M., M. Ryan, and R. Bernhard, Adaptive passive vibration control. Journal of Sound and Vibration, 1996. 189(5): p. 565-585. 9. Nagaya, K., et al., Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control. Journal of sound and vibration, 1999. 228(4): p. 773-792. 10. Xu, Z., X. Gong, and X. Chen, Development of a mechanical semi-active vibration absorber. Advances in Vibration Engineering, 2011. 10(3): p. 229-238. 11. Rustighi, E., M. Brennan, and B. Mace, A shape memory alloy adaptive tuned vibration absorber: design and implementation. Smart Materials and Structures, 2004. 14(1): p. 19. 12. Gerlach, T., J. Ehrlich, and H. Böse. Novel active vibration absorber with magnetorheological fluid. in Journal of Physics: Conference Series. 2009. IOP Publishing. 13. Deng, H.-x., X.-l. Gong, and L.-h. Wang, Development of an adaptive tuned vibration absorber with magnetorheological elastomer. Smart materials and structures, 2006. 15(5): p. N111. 14. Hollkamp, J.J. and T.F. Starchville Jr, A self-tuning piezoelectric vibration absorber. Journal of intelligent material systems and structures, 1994. 5(4): p. 559-566. 15. Xin, F.-L., X.-X. Bai, and L.-J. Qian, Principle, modeling, and control of a magnetorheological elastomer dynamic vibration absorber for powertrain mount systems of automobiles. Journal of Intelligent Material Systems and Structures, 2017. 28(16): p. 2239-2254. 16. Carlson, J.D. and M.R. Jolly, MR fluid, foam and elastomer devices. mechatronics, 2000. 10(4-5): p. 555-569. 17. Rabinow, J., The magnetic fluid clutch. Electrical Engineering, 1948. 67(12): p. 1167-1167. 18. Truong, D. and K. Ahn, MR fluid damper and its application to force sensorless damping control system. Smart Actuation and Sensing Systems-Recent Advances and Future Challenges, InTech, Rijeka, 2012: p. 383-424. 19. Ashtiani, M., S. Hashemabadi, and A. Ghaffari, A review on the magnetorheological fluid preparation and stabilization. Journal of magnetism and Magnetic Materials, 2015. 374: p. 716-730. 20. Huang, J., et al., Analysis and design of a cylindrical magneto-rheological fluid brake. Journal of Materials Processing Technology, 2002. 129(1-3): p. 559-562. 21. Lee, U., et al., Design analysis and experimental evaluation of an MR fluid clutch. Journal of Intelligent Material Systems and Structures, 1999. 10(9): p. 701-707. 22. Spencer Jr, B.F., et al. Smart dampers for seismic protection of structures: a full-scale study. in Proceedings of the second world conference on structural control. 1998. Kyoto. 23. Lai, C.Y. and W.-H. Liao, Vibration control of a suspension system via a magnetorheological fluid damper. Journal of Vibration and Control, 2002. 8(4): p. 527-547. 24. Bolat, F.C. and S. Sivrioglu, Active vibration suppression of elastic blade structure: Using a novel magnetorheological layer patch. Journal of Intelligent Material Systems and Structures, 2018. 29(19): p. 3792-3803. 25. Sivrioglu, S. and F.C. Bolat, Switching linear quadratic Gaussian control of a flexible blade structure containing magnetorheological fluid. Transactions of the Institute of Measurement and Control, 2020. 42(3): p. 618-627. 26. Shen, Y., M.F. Golnaraghi, and G.R. Heppler, Experimental research and modeling of magnetorheological elastomers. Journal of Intelligent Material Systems and Structures, 2004. 15(1): p. 27-35. 27. Rigbi, Z. and L. Jilken, The response of an elastomer filled with soft ferrite to mechanical and magnetic influences. Journal of magnetism and magnetic materials, 1983. 37(3): p. 267-276. 28. Liu, T. and Y. Xu, Magnetorheological Elastomers: Materials and Applications, in Smart and Functional Soft Materials. 2019, IntechOpen. 29. Gong, X., X. Zhang, and P. Zhang, Fabrication and characterization of isotropic magnetorheological elastomers. Polymer testing, 2005. 24(5): p. 669-676. 30. Chen, L., X. Gong, and W. Li, Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers. Smart Materials and Structures, 2007. 16(6): p. 2645. 31. Li, W., X. Zhang, and H. Du, Magnetorheological elastomers and their applications, in Advances in elastomers I. 2013, Springer. p. 357-374. 32. Khanouki, M.A., R. Sedaghati, and M. Hemmatian, Experimental characterization and microscale modeling of isotropic and anisotropic magnetorheological elastomers. Composites Part B: Engineering, 2019. 176: p. 107311. 33. Cantera, M.A., et al., Modeling of magneto-mechanical response of magnetorheological elastomers (MRE) and MRE-based systems: a review. Smart Materials and Structures, 2017. 26(2): p. 023001. 34. Ahamed, R., S.-B. Choi, and M.M. Ferdaus, A state of art on magneto-rheological materials and their potential applications. Journal of Intelligent Material Systems and Structures, 2018. 29(10): p. 2051-2095. 35. Sun, S., et al., The development of an adaptive tuned magnetorheological elastomer absorber working in squeeze mode. Smart Materials and Structures, 2014. 23(7): p. 075009. 36. Lerner, A.A. and K. Cunefare, Performance of MRE-based vibration absorbers. Journal of Intelligent Material Systems and Structures, 2008. 19(5): p. 551-563. 37. Ginder, J.M., W.F. Schlotter, and M.E. Nichols. Magnetorheological elastomers in tunable vibration absorbers. in Smart structures and materials 2001: damping and isolation. 2001. International Society for Optics and Photonics. 38. Deng, H.-x. and X.-l. Gong, Application of magnetorheological elastomer to vibration absorber. Communications in nonlinear science and numerical simulation, 2008. 13(9): p. 1938-1947. 39. Dong, X.-M., et al., A new variable stiffness absorber based on magneto-rheological elastomer. Transactions of Nonferrous Metals Society of China, 2009. 19: p. s611-s615. 40. Sun, S., et al., Development of an MRE adaptive tuned vibration absorber with self-sensing capability. Smart Materials and Structures, 2015. 24(9): p. 095012. 41. Komatsuzaki, T., T. Inoue, and Y. Iwata, Experimental investigation of an adaptively tuned dynamic absorber incorporating magnetorheological elastomer with self-sensing property. Experimental Mechanics, 2016. 56(5): p. 871-880. 42. Liu, G., et al., Development of a semi-active dynamic vibration absorber for longitudinal vibration of propulsion shaft system based on magnetorheological elastomer. Smart Materials and Structures, 2017. 26(7): p. 075009. 43. Jang, D.I., et al., Designing an attachable and power-efficient all-in-one module of a tunable vibration absorber based on magnetorheological elastomer. Smart Materials and Structures, 2018. 27(8): p. 085009. 44. Yang, J., et al., Development and evaluation of an MRE-based absorber with two individually controllable natural frequencies. Smart Materials and Structures, 2018. 27(9): p. 095002. 45. Ammovilli, V., M. Bilasse, and I. Charpentier, Continuous nonlinear eigenvalue solver with applications to the design of electro/magnetorheological sandwich structures. Smart Materials and Structures, 2019. 28(8): p. 085038. 46. DiTaranto, R., Theory of vibratory bending for elastic and viscoelastic layered finite-length beams. 1965. 47. DiTaranto, R. and W. Blasingame, Composite damping of vibrating sandwich beams. 1967. 48. Mead, D. and S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. Journal of sound and vibration, 1969. 10(2): p. 163-175. 49. Mead, D. and S. Markus, Loss factors and resonant frequencies of encastre damped sandwich beams. Journal of Sound and Vibration, 1970. 12(1): p. 99-112. 50. Benaroya, H., M. Nagurka, and S. Han, Mechanical vibration: analysis, uncertainties, and control. 2017: CRC Press. 51. Meeker, D. Finite Element Method Magnetics (Version 4.2). FEMM 2010; Available from: www.femm.info. 52. Sage, A.P. and G.W. Husa. Algorithms for sequential adaptive estimation of prior statistics. in 1969 IEEE Symposium on Adaptive Processes (8th) Decision and Control. 1969. IEEE. 53. Liao, G., X. Gong, and S. Xuan, Phase based stiffness tuning algorithm for a magnetorheological elastomer dynamic vibration absorber. Smart Materials and Structures, 2013. 23(1): p. 015016.