Adulcikas, J., Sonda, S., Norouzi, S., Sohal, S. S., & Myers, S. (2019). Targeting the Zinc Transporter ZIP7 in the Treatment of Insulin Resistance and Type 2 Diabetes. Nutrients, 11(2). https://doi.org/10.3390/nu11020408 Ali, S. S., Ahsan, H., Zia, M. K., Siddiqui, T., & Khan, F. H. (2020). Understanding oxidants and antioxidants: Classical team with new players. Journal of Food Biochemistry, 44(3), e13145. https://doi.org/10.1111/jfbc.13145 Alp, N. J., & Channon, K. M. (2004). Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(3), 413–420. https://doi.org/10.1161/01.ATV.0000110785.96039.f6 American Diabetes Association. (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37 Suppl 1, S81-90. https://doi.org/10.2337/dc14-S081 American Diabetes Association. (March 2018). Economic costs of diabetes in the U.S. in 2017. Diabetes Care, doi:10.2337/dci18-0007 Anzilotti, C., Swan, D. J., Boisson, B., Deobagkar-Lele, M., Oliveira, C., Chabosseau, P., Engelhardt, K. R., Xu, X., Chen, R., Alvarez, L., Berlinguer-Palmini, R., Bull, K. R., Cawthorne, E., Cribbs, A. P., Crockford, T. L., Dang, T. S., Fearn, A., Fenech, E. J., de Jong, S. J., … Hambleton, S. (2019). An essential role for the Zn2+ transporter ZIP7 in B cell development. Nature Immunology, 20(3), 350–361. https://doi.org/10.1038/s41590-018-0295-8 Arruda, A. P., & Hotamisligil, G. S. (2015). Calcium Homeostasis and Organelle Function in the Pathogenesis of Obesity and Diabetes. Cell Metabolism, 22(3), 381–397. https://doi.org/10.1016/j.cmet.2015.06.010 Aydemir, T. B., & Cousins, R. J. (2018). The Multiple Faces of the Metal Transporter ZIP14 (SLC39A14). The Journal of Nutrition, 148(2), 174–184. https://doi.org/10.1093/jn/nxx041 Bao, B., Prasad, A. S., Beck, F. W. J., Fitzgerald, J. T., Snell, D., Bao, G. W., Singh, T., & Cardozo, L. J. (2010). Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: A potential implication of zinc as an atheroprotective agent. The American Journal of Clinical Nutrition, 91(6), 1634–1641. https://doi.org/10.3945/ajcn.2009.28836 Barman, S., Pradeep, S. R., & Srinivasan, K. (2017). Zinc supplementation mitigates its dyshomeostasis in experimental diabetic rats by regulating the expression of zinc transporters and metallothionein. Metallomics: Integrated Biometal Science, 9(12), 1765–1777. https://doi.org/10.1039/c7mt00210f Barman, S., Pradeep, S. R., & Srinivasan, K. (2018). Zinc supplementation alleviates the progression of diabetic nephropathy by inhibiting the overexpression of oxidative-stress-mediated molecular markers in streptozotocin-induced experimental rats. The Journal of Nutritional Biochemistry, 54, 113–129. https://doi.org/10.1016/j.jnutbio.2017.11.008 Basaki, M., Saeb, M., Nazifi, S., & Shamsaei, H. A. (2012). Zinc, copper, iron, and chromium concentrations in young patients with type 2 diabetes mellitus. Biological Trace Element Research, 148(2), 161–164. https://doi.org/10.1007/s12011-012-9360-6 Bedard, K., & Krause, K.-H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87(1), 245–313. https://doi.org/10.1152/physrev.00044.2005 Bellomo, E. A., Meur, G., & Rutter, G. A. (2011). Glucose regulates free cytosolic Zn2+ concentration, Slc39 (ZiP), and metallothionein gene expression in primary pancreatic islet β-cells. The Journal of Biological Chemistry, 286(29), 25778–25789. https://doi.org/10.1074/jbc.M111.246082 Brownlee, M. (2005). The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 54(6), 1615–1625. https://doi.org/10.2337/diabetes.54.6.1615 Cai, L., Wang, Y., Zhou, G., Chen, T., Song, Y., Li, X., & Kang, Y. J. (2006). Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. Journal of the American College of Cardiology, 48(8), 1688–1697. https://doi.org/10.1016/j.jacc.2006.07.022 Chabosseau, P., & Rutter, G. A. (2016). Zinc and diabetes. Archives of Biochemistry and Biophysics, 611, 79–85. https://doi.org/10.1016/j.abb.2016.05.022 Chabosseau, P., Woodier, J., Cheung, R., & Rutter, G. A. (2018). Sensors for measuring subcellular zinc pools. Metallomics: Integrated Biometal Science, 10(2), 229–239. https://doi.org/10.1039/c7mt00336f Chiaverini, N., & De Ley, M. (2010). Protective effect of metallothionein on oxidative stress-induced DNA damage. Free Radical Research, 44(6), 605–613. https://doi.org/10.3109/10715761003692511 Chilelli, N. C., Burlina, S., & Lapolla, A. (2013). AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: A “glycoxidation-centric” point of view. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 23(10), 913–919. https://doi.org/10.1016/j.numecd.2013.04.004 Choi, S., Liu, X., & Pan, Z. (2018). Zinc deficiency and cellular oxidative stress: Prognostic implications in cardiovascular diseases. Acta Pharmacologica Sinica, 39(7), 1120–1132. https://doi.org/10.1038/aps.2018.25 Cooper-Capetini, V., de Vasconcelos, D. A. A., Martins, A. R., Hirabara, S. M., Donato, J., Carpinelli, A. R., & Abdulkader, F. (2017). Zinc Supplementation Improves Glucose Homeostasis in High Fat-Fed Mice by Enhancing Pancreatic β-Cell Function. Nutrients, 9(10). https://doi.org/10.3390/nu9101150 Cruz, K. J. C., de Oliveira, A. R. S., & Marreiro, D. do N. (2015). Antioxidant role of zinc in diabetes mellitus. World Journal of Diabetes, 6(2), 333–337. https://doi.org/10.4239/wjd.v6.i2.333 Devasagayam, T. P. A., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. D. (2004). Free radicals and antioxidants in human health: Current status and future prospects. The Journal of the Association of Physicians of India, 52, 794–804. Diabetes Canada. (2019). Types of diabetes. Retrieved from https://www.diabetes.ca/about-diabetes/types-of-diabetes Diers, A. R., Broniowska, K. A., & Hogg, N. (2013). Nitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells. Redox Biology, 1, 1–7. https://doi.org/10.1016/j.redox.2012.11.003 DiMeglio, L. A., Evans-Molina, C., & Oram, R. A. (2018). Type 1 diabetes. Lancet (London, England), 391(10138), 2449–2462. https://doi.org/10.1016/S0140-6736(18)31320-5 Domingueti, C. P., Dusse, L. M. S., Carvalho, M. das G., de Sousa, L. P., Gomes, K. B., & Fernandes, A. P. (2016). Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. Journal of Diabetes and Its Complications, 30(4), 738–745. https://doi.org/10.1016/j.jdiacomp.2015.12.018 Faria, A., & Persaud, S. J. (2017). Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential. Pharmacology & Therapeutics, 172, 50-62. doi:S0163-7258(16)30239-X [pii] Farooq, M. (2019). Zinc Deficiency is Associated with Poor Glycemic Control. Journal of the College of Physicians and Surgeons--Pakistan: JCPSP, 29(3), 253–257. https://doi.org/10.29271/jcpsp.2019.03.253 Fernández-Cao, J. C., Warthon-Medina, M., H Moran, V., Arija, V., Doepking, C., Serra-Majem, L., & Lowe, N. M. (2019). Zinc Intake and Status and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients, 11(5). https://doi.org/10.3390/nu11051027 Fiorentino, T. V., Prioletta, A., Zuo, P., & Folli, F. (2013). Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Current Pharmaceutical Design, 19(32), 5695–5703. https://doi.org/10.2174/1381612811319320005 Fukunaka, A., & Fujitani, Y. (2018). Role of Zinc Homeostasis in the Pathogenesis of Diabetes and Obesity. International Journal of Molecular Sciences, 19(2). https://doi.org/10.3390/ijms19020476 Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058-1070. doi:10.1161/CIRCRESAHA.110.223545 [doi] Hu, L., Dai, S.-C., Luan, X., Chen, J., & Cannavicci, A. (2018). Dysfunction and Therapeutic Potential of Endothelial Progenitor Cells in Diabetes Mellitus. Journal of Clinical Medicine Research, 10(10), 752–757. https://doi.org/10.14740/jocmr3581w Huang, Q., Du, J., Merriman, C., & Gong, Z. (2019). Genetic, Functional, and Immunological Study of ZnT8 in Diabetes. International Journal of Endocrinology, 2019, 1524905. https://doi.org/10.1155/2019/1524905 Incalza, M. A., D’Oria, R., Natalicchio, A., Perrini, S., Laviola, L., & Giorgino, F. (2018). Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascular Pharmacology, 100, 1–19. https://doi.org/10.1016/j.vph.2017.05.005 Inzucchi, S. E. (2012). Clinical practice. Diagnosis of diabetes. The New England Journal of Medicine, 367(6), 542–550. https://doi.org/10.1056/NEJMcp1103643 Jansen, J., Rosenkranz, E., Overbeck, S., Warmuth, S., Mocchegiani, E., Giacconi, R., Weiskirchen, R., Karges, W., & Rink, L. (2012). Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zinc. The Journal of Nutritional Biochemistry, 23(11), 1458–1466. https://doi.org/10.1016/j.jnutbio.2011.09.008 Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K., & Librowski, T. (2017). Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 25(1), 11–24. https://doi.org/10.1007/s10787-017-0309-4 Jayawardena, R., Ranasinghe, P., Galappatthy, P., Malkanthi, R., Constantine, G., & Katulanda, P. (2012). Effects of zinc supplementation on diabetes mellitus: A systematic review and meta-analysis. Diabetology & Metabolic Syndrome, 4(1), 13. https://doi.org/10.1186/1758-5996-4-13 Johansen, J. S., Harris, A. K., Rychly, D. J., & Ergul, A. (2005). Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovascular Diabetology, 4, 5. https://doi.org/10.1186/1475-2840-4-5 Kang, Y. J., Li, Y., Sun, X., & Sun, X. (2003). Antiapoptotic effect and inhibition of ischemia/reperfusion-induced myocardial injury in metallothionein-overexpressing transgenic mice. The American Journal of Pathology, 163(4), 1579–1586. https://doi.org/10.1016/S0002-9440(10)63514-6 Katakami, N. (2018). Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. Journal of Atherosclerosis and Thrombosis, 25(1), 27–39. https://doi.org/10.5551/jat.RV17014 Kim, Y.-W., & Byzova, T. V. (2014). Oxidative stress in angiogenesis and vascular disease. Blood, 123(5), 625–631. https://doi.org/10.1182/blood-2013-09-512749 Kuznetsov, A. V., Javadov, S., Margreiter, R., Grimm, M., Hagenbuchner, J., & Ausserlechner, M. J. (2019). The Role of Mitochondria in the Mechanisms of Cardiac Ischemia-Reperfusion Injury. Antioxidants (Basel, Switzerland), 8(10). https://doi.org/10.3390/antiox8100454 Larsen, S., Scheede-Bergdahl, C., Whitesell, T., Boushel, R., & Bergdahl, A. (2015). Increased intrinsic mitochondrial respiratory capacity in skeletal muscle from rats with streptozotocin-induced hyperglycemia. Physiological Reports, 3(7). https://doi.org/10.14814/phy2.12467 Li, Hu, Malyar, R. M., Zhai, N., Wang, H., Liu, K., Liu, D., Pan, C., Gan, F., Huang, K., Miao, J., & Chen, X. (2019). Zinc supplementation alleviates OTA-induced oxidative stress and apoptosis in MDCK cells by up-regulating metallothioneins. Life Sciences, 234, 116735. https://doi.org/10.1016/j.lfs.2019.116735 Li, Huige, & Forstermann, U. (2014). Pharmacological prevention of eNOS uncoupling. Current Pharmaceutical Design, 20(22), 3595–3606. https://doi.org/10.2174/13816128113196660749 Li, X., & Zhao, J. (2019). The influence of zinc supplementation on metabolic status in gestational diabetes: A meta-analysis of randomized controlled studies. The Journal of Maternal-Fetal & Neonatal Medicine: The Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 1–6. https://doi.org/10.1080/14767058.2019.1659769 Liang, T., Zhang, Q., Sun, W., Xin, Y., Zhang, Z., Tan, Y., Zhou, S., Zhang, C., Cai, L., Lu, X., & Cheng, M. (2015). Zinc treatment prevents type 1 diabetes-induced hepatic oxidative damage, endoplasmic reticulum stress, and cell death, and even prevents possible steatohepatitis in the OVE26 mouse model: Important role of metallothionein. Toxicology Letters, 233(2), 114–124. https://doi.org/10.1016/j.toxlet.2015.01.010 Liu, Y., Batchuluun, B., Ho, L., Zhu, D., Prentice, K. J., Bhattacharjee, A., Zhang, M., Pourasgari, F., Hardy, A. B., Taylor, K. M., Gaisano, H., Dai, F. F., & Wheeler, M. B. (2015). Characterization of Zinc Influx Transporters (ZIPs) in Pancreatic β Cells: ROLES IN REGULATING CYTOSOLIC ZINC HOMEOSTASIS AND INSULIN SECRETION. The Journal of Biological Chemistry, 290(30), 18757–18769. https://doi.org/10.1074/jbc.M115.640524 Lu, Y., Liu, Y., Li, H., Wang, X., Wu, W., & Gao, L. (2015). Effect and mechanisms of zinc supplementation in protecting against diabetic cardiomyopathy in a rat model of type 2 diabetes. Bosnian Journal of Basic Medical Sciences, 15(1), 14–20. https://doi.org/10.17305/bjbms.2015.63 Marreiro, D. do N., Cruz, K. J. C., Morais, J. B. S., Beserra, J. B., Severo, J. S., & de Oliveira, A. R. S. (2017). Zinc and Oxidative Stress: Current Mechanisms. Antioxidants (Basel, Switzerland), 6(2). https://doi.org/10.3390/antiox6020024 Miao, X., Wang, Y., Sun, J., Sun, W., Tan, Y., Cai, L., Zheng, Y., Su, G., Liu, Q., & Wang, Y. (2013). Zinc protects against diabetes-induced pathogenic changes in the aorta: Roles of metallothionein and nuclear factor (erythroid-derived 2)-like 2. Cardiovascular Diabetology, 12, 54. https://doi.org/10.1186/1475-2840-12-54 Mondragon & Bergdhal. (2018). Metallothionein expression in slow- vs. Fast-twitch muscle fibers following 4 weeks of streptozotocin-induced type 1 diabetes. https://www.facetsjournal.com/doi/10.1139/facets-2017-0058 Moris, D., Spartalis, M., Spartalis, E., Karachaliou, G. S., Karaolanis, G. I., Tsourouflis, G., . . . Theocharis, S. (2017). The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Annals of Translational Medicine, 5(16), 326. doi:10.21037/atm.2017.06.27 [doi] Myers, S. A., Nield, A., Chew, G.-S., & Myers, M. A. (2013). The zinc transporter, Slc39a7 (Zip7) is implicated in glycaemic control in skeletal muscle cells. PloS One, 8(11), e79316. https://doi.org/10.1371/journal.pone.0079316 Myers, S. A., Nield, A., & Myers, M. (2012). Zinc transporters, mechanisms of action and therapeutic utility: Implications for type 2 diabetes mellitus. Journal of Nutrition and Metabolism, 2012, 173712. https://doi.org/10.1155/2012/173712 Norouzi, S., Adulcikas, J., Sohal, S. S., & Myers, S. (2017). Zinc transporters and insulin resistance: Therapeutic implications for type 2 diabetes and metabolic disease. Journal of Biomedical Science, 24(1), 87. https://doi.org/10.1186/s12929-017-0394-0 Olechnowicz, J., Tinkov, A., Skalny, A., & Suliburska, J. (2018). Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. The Journal of Physiological Sciences: JPS, 68(1), 19–31. https://doi.org/10.1007/s12576-017-0571-7 Oteiza, P. I. (2012). Zinc and the modulation of redox homeostasis. Free Radical Biology & Medicine, 53(9), 1748–1759. https://doi.org/10.1016/j.freeradbiomed.2012.08.568 Özcelik, D., Nazıroglu, M., Tunçdemir, M., Çelik, Ö., Öztürk, M., & Flores-Arce, M. F. (2012). Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biological Trace Element Research, 150(1–3), 342–349. https://doi.org/10.1007/s12011-012-9508-4 Panth, N., Paudel, K. R., & Parajuli, K. (2016). Reactive Oxygen Species: A Key Hallmark of Cardiovascular Disease. Advances in Medicine, 2016, 9152732. https://doi.org/10.1155/2016/9152732 Park, Y., Zhang, J., & Cai, L. (2018). Reappraisal of metallothionein: Clinical implications for patients with diabetes mellitus. Journal of Diabetes, 10(3), 213–231. https://doi.org/10.1111/1753-0407.12620 Prasad, A. S. (2014). Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Frontiers in Nutrition, 1, 14. https://doi.org/10.3389/fnut.2014.00014 Ranasinghe, P., Pigera, S., Galappatthy, P., Katulanda, P., & Constantine, G. R. (2015). Zinc and diabetes mellitus: Understanding molecular mechanisms and clinical implications. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences, 23, 44. https://doi.org/10.1186/s40199-015-0127-4 Ranasinghe, P., Wathurapatha, W. S., Galappatthy, P., Katulanda, P., Jayawardena, R., & Constantine, G. R. (2018). Zinc supplementation in prediabetes: A randomized double-blind placebo-controlled clinical trial. Journal of Diabetes, 10(5), 386–397. https://doi.org/10.1111/1753-0407.12621 Rocha, M., Diaz-Morales, N., Rovira-Llopis, S., Escribano-Lopez, I., Bañuls, C., Hernandez-Mijares, A., Diamanti-Kandarakis, E., & Victor, V. M. (2016). Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Diabetes. Current Pharmaceutical Design, 22(18), 2640–2649. https://doi.org/10.2174/1381612822666160209152033 Rochette, L., Zeller, M., Cottin, Y., & Vergely, C. (2014). Diabetes, oxidative stress and therapeutic strategies. Biochimica Et Biophysica Acta, 1840(9), 2709–2729. https://doi.org/10.1016/j.bbagen.2014.05.017 Rolo, A. P., & Palmeira, C. M. (2006). Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology, 212(2), 167-178. doi:S0041-008X(06)00028-7 [pii] Saberzadeh-Ardestani, B., Karamzadeh, R., Basiri, M., Hajizadeh-Saffar, E., Farhadi, A., Shapiro, A. M. J., . . . Baharvand, H. (2018). Type 1 diabetes mellitus: Cellular and molecular pathophysiology at A glance. Cell Journal, 20(3), 294-301. doi:10.22074/cellj.2018.5513 [doi] Saharia, G. K., & Goswami, R. K. (2013). Evaluation of serum zinc status and glycated hemoglobin of type 2 diabetes mellitus patients in a tertiary care hospital of assam. Journal of Laboratory Physicians, 5(1), 30–33. https://doi.org/10.4103/0974-2727.115923 Sailaja, Y. R., Baskar, R., & Saralakumari, D. (2003). The antioxidant status during maturation of reticulocytes to erythrocytes in type 2 diabetics. Free Radical Biology & Medicine, 35(2), 133–139. https://doi.org/10.1016/s0891-5849(03)00071-6 Santilli, F., D’Ardes, D., & Davì, G. (2015). Oxidative stress in chronic vascular disease: From prediction to prevention. Vascular Pharmacology, 74, 23–37. https://doi.org/10.1016/j.vph.2015.09.003 Scheede-Bergdahl, C., & Bergdahl, A. (2017). Adaptation of mitochondrial expression and ATP production in dedifferentiating vascular smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 95(12), 1473–1479. https://doi.org/10.1139/cjpp-2017-0227 Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology : CB, 24(10), R453-62. doi:10.1016/j.cub.2014.03.034 [doi] Sena, C. M., Leandro, A., Azul, L., Seiça, R., & Perry, G. (2018). Vascular Oxidative Stress: Impact and Therapeutic Approaches. Frontiers in Physiology, 9, 1668. https://doi.org/10.3389/fphys.2018.01668 Sena, C. M., Pereira, A. M., & Seica, R. (2013). Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochimica Et Biophysica Acta, 1832(12), 2216-2231. doi:10.1016/j.bbadis.2013.08.006 [doi] Shan, Z., Bao, W., Zhang, Y., Rong, Y., Wang, X., Jin, Y., Song, Y., Yao, P., Sun, C., Hu, F. B., & Liu, L. (2014). Interactions between zinc transporter-8 gene (SLC30A8) and plasma zinc concentrations for impaired glucose regulation and type 2 diabetes. Diabetes, 63(5), 1796–1803. https://doi.org/10.2337/db13-0606 Sotler, R., Poljšak, B., Dahmane, R., Jukić, T., Pavan Jukić, D., Rotim, C., Trebše, P., & Starc, A. (2019). PROOXIDANT ACTIVITIES OF ANTIOXIDANTS AND THEIR IMPACT ON HEALTH. Acta Clinica Croatica, 58(4), 726–736. https://doi.org/10.20471/acc.2019.58.04.20 Steck, A. K., & Rewers, M. J. (2011). Genetics of type 1 diabetes. Clinical Chemistry, 57(2), 176–185. https://doi.org/10.1373/clinchem.2010.148221 Sturtzel, C. (2017). Endothelial Cells. Advances in Experimental Medicine and Biology, 1003, 71–91. https://doi.org/10.1007/978-3-319-57613-8_4 Sun, Q., van Dam, R. M., Willett, W. C., & Hu, F. B. (2009). Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care, 32(4), 629–634. https://doi.org/10.2337/dc08-1913 Thakur, P., Kumar, A., & Kumar, A. (2018). Targeting oxidative stress through antioxidants in diabetes mellitus. Journal of Drug Targeting, 26(9), 766–776. https://doi.org/10.1080/1061186X.2017.1419478 Tuncay, E., Bitirim, C. V., Olgar, Y., Durak, A., Rutter, G. A., & Turan, B. (2019). Zn2+-transporters ZIP7 and ZnT7 play important role in progression of cardiac dysfunction via affecting sarco(endo)plasmic reticulum-mitochondria coupling in hyperglycemic cardiomyocytes. Mitochondrion, 44, 41–52. https://doi.org/10.1016/j.mito.2017.12.011 van der Schaft, N., Schoufour, J. D., Nano, J., Kiefte-de Jong, J. C., Muka, T., Sijbrands, E. J. G., Ikram, M. A., Franco, O. H., & Voortman, T. (2019). Dietary antioxidant capacity and risk of type 2 diabetes mellitus, prediabetes and insulin resistance: The Rotterdam Study. European Journal of Epidemiology, 34(9), 853–861. https://doi.org/10.1007/s10654-019-00548-9 Wada, J., & Nakatsuka, A. (2016). Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes. Acta Medica Okayama, 70(3), 151–158. https://doi.org/10.18926/AMO/54413 Wang, J., Song, Y., Elsherif, L., Song, Z., Zhou, G., Prabhu, S. D., Saari, J. T., & Cai, L. (2006). Cardiac metallothionein induction plays the major role in the prevention of diabetic cardiomyopathy by zinc supplementation. Circulation, 113(4), 544–554. https://doi.org/10.1161/CIRCULATIONAHA.105.537894 Wang, S., Wang, B., Wang, Y., Tong, Q., Liu, Q., Sun, J., Zheng, Y., & Cai, L. (2017). Zinc Prevents the Development of Diabetic Cardiomyopathy in db/db Mice. International Journal of Molecular Sciences, 18(3). https://doi.org/10.3390/ijms18030580 Widlansky, M. E., & Hill, R. B. (2018). Mitochondrial regulation of diabetic vascular disease: An emerging opportunity. Translational Research: The Journal of Laboratory and Clinical Medicine, 202, 83–98. https://doi.org/10.1016/j.trsl.2018.07.015 Williams, C. L., & Long, A. E. (2019). What has zinc transporter 8 autoimmunity taught us about type 1 diabetes? Diabetologia, 62(11), 1969–1976. https://doi.org/10.1007/s00125-019-04975-x Wood, Z. A., Schröder, E., Robin Harris, J., & Poole, L. B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends in Biochemical Sciences, 28(1), 32–40. https://doi.org/10.1016/s0968-0004(02)00003-8 Woodruff, G., Bouwkamp, C. G., de Vrij, F. M., Lovenberg, T., Bonaventure, P., Kushner, S. A., & Harrington, A. W. (2018). The Zinc Transporter SLC39A7 (ZIP7) Is Essential for Regulation of Cytosolic Zinc Levels. Molecular Pharmacology, 94(3), 1092–1100. https://doi.org/10.1124/mol.118.112557 Yadao, D. R., Bergdahl, A., & MacKenzie, S. (Manuscript in preparation). Aerobic training increases respiratory capacity in vascular mitochondria. (Unpublished Master's of Science). Concorida University. Yu, E., Mercer, J., & Bennett, M. (2012). Mitochondria in vascular disease. Cardiovascular Research, 95(2), 173–182. https://doi.org/10.1093/cvr/cvs111 Zaccardi, F., Webb, D. R., Yates, T., & Davies, M. J. (2016). Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective. Postgraduate Medical Journal, 92(1084), 63–69. https://doi.org/10.1136/postgradmedj-2015-133281 Zalewski, P. D., Beltrame, J. F., Wawer, A. A., Abdo, A. I., & Murgia, C. (2019). Roles for endothelial zinc homeostasis in vascular physiology and coronary artery disease. Critical Reviews in Food Science and Nutrition, 59(21), 3511–3525. https://doi.org/10.1080/10408398.2018.1495614 Zhao, T., Huang, Q., Su, Y., Sun, W., Huang, Q., & Wei, W. (2019). Zinc and its regulators in pancreas. Inflammopharmacology, 27(3), 453–464. https://doi.org/10.1007/s10787-019-00573-w Zhao, Y., Tan, Y., Dai, J., Li, B., Guo, L., Cui, J., Wang, G., Shi, X., Zhang, X., Mellen, N., Li, W., & Cai, L. (2011). Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice. Toxicology Letters, 200(1–2), 100–106. https://doi.org/10.1016/j.toxlet.2010.11.001 Zhu, K., Nie, S., Li, C., Huang, J., Hu, X., Li, W., Gong, D., & Xie, M. (2013). Antidiabetic and pancreas-protective effects of zinc threoninate chelate in diabetic rats may be associated with its antioxidative stress ability. Biological Trace Element Research, 153(1–3), 291–298. https://doi.org/10.1007/s12011-013-9675-y