[1] S. Sridharan, Delamination Behaviour of Composites, 2008. doi:10.1533/9781845694821. [2] V. V. Bolotin, Delaminations in composite structures: Its origin, buckling, growth and stability, Compos. Part B Eng. 27 (1996) 129–145. doi:10.1016/1359-8368(95)00035-6. [3] H. Chai, C.D. Babcock, W.G. Knauss, One dimensional modelling of failure in laminated plates by delamination buckling, Int. J. Solids Struct. 17 (1981) 1069–1083. doi:10.1016/0020-7683(81)90014-7. [4] H. Chai, C.D. Babcock, W.G. Knauss, One dimensional modelling of failure in laminated plates by delamination buckling, Int. J. Solids Struct. 17 (1981) 1069–1083. doi:10.1016/0020-7683(81)90014-7. [5] W.L. Yin, The Effects of Laminated Structure on Delamination Buckling and Growth, J. Compos. Mater. 22 (1988) 502–517. doi:10.1177/002199838802200601. [6] X.R. Zhuo, H.S. Jang, H.G. Beom, Delamination buckling of a thin film bonded to an orthotropic substrate, Int. J. Precis. Eng. Manuf. 16 (2015) 323–333. doi:10.1007/s12541-015-0043-z. [7] S. Wang, C.M. Harvey, B. Wang, A. Watson, Post-local buckling-driven delamination in bilayer composite beams, Compos. Struct. 133 (2015) 1058–1066. doi:10.1016/j.compstruct.2015.08.012. [8] G.A. Kardomateas, Initial post-buckling and growth behavior of internal delaminations in composite plates, in: Am. Soc. Mech. Eng., 1993: pp. 1–8. [9] P.L. Larsson, On multiple delamination buckling and growth in composite plates, Int. J. Solids Struct. 27 (1991) 1623–1637. doi:10.1016/0020-7683(91)90065-N. [10] G.B. Chai, W.M. Banks, J. Rhodes, The instability behaviour of laminated panels with elastically rotationally restrained edges, Compos. Struct. 19 (1991) 41–66. [11] K.N. Shivakumar, J.D. Whitcomb, Buckling of a Sublaminate in a Quasi-Isotropic Composite Laminate, J. Compos. Mater. 19 (1985) 2–18. doi:10.1177/002199838501900101. [12] B.D. Davidson, Delamination Buckling: Theory and Experiment, J. Compos. Mater. 25 (1991) 1351–1378. doi:10.1177/002199839102501007. [13] W.M. Kyoung, C.G. Kim, Delamination Buckling and Growth of Composite Laminated Plates with Transverse Shear Deformation, J. Compos. Mater. 29 (1995) 2047–2068. doi:10.1177/002199839502901506. [14] H. Kim, K.T. Kedward, A method for modeling the local and global buckling of delaminated composite plates, Compos. Struct. 44 (1999) 43–53. doi:10.1016/S0263-8223(98)00117-2. [15] K.F. Nilsson, L.E. Asp, J.E. Alpman, L. Nystedt, Delamination buckling and growth for delaminations at different depths in a slender composite panel, Int. J. Solids Struct. 38 (2001) 3039–3071. doi:10.1016/S0020-7683(00)00189-X. [16] G.J. Simitses, S. Sallam, W.L. Yin, Effect of delamination of axially loaded homogeneous laminated plates, AIAA J. 23 (1985) 1437–1444. doi:10.2514/3.9104. [17] S. Sallam, G.J. Simitses, Delamination buckling and growth of flat, cross-ply laminates, Compos. Struct. 4 (1985) 361–381. doi:10.1016/0263-8223(85)90033-9. [18] G.A. Kardomateas, D.W. Schmueser, Buckling and postbuckling of delaminated composites under compressive loads including transverse shear effects, AIAA J. 26 (1988) 337–343. doi:10.2514/3.9894. [19] H.P. Chen, Shear deformation theory for compressive delamination buckling and growth, AIAA J. 29 (1991) 813–819. doi:10.2514/3.10661. [20] I. Sheinman, Y. Reichman, A study of buckling and vibration of laminated shallow curved panels, Int. J. Solids Struct. 29 (1992) 1329–1338. doi:10.1016/0020-7683(92)90081-4. [21] C.W. Yap, G.B. Chai, Analytical and numerical studies on the buckling of delaminated composite beams, Compos. Struct. 80 (2007) 307–319. doi:10.1016/j.compstruct.2006.05.010. [22] M. Kharazi, H.R. Ovesy, Postbuckling behavior of composite plates with through-the-width delaminations, Thin-Walled Struct. 46 (2008) 939–946. doi:10.1016/j.tws.2008.01.005. [23] M. Kharazi, H.R. Ovesy, M. Taghizadeh, Buckling of the composite laminates containing through-the-width delaminations using different plate theories, Compos. Struct. 92 (2010) 1176–1183. doi:10.1016/j.compstruct.2009.10.019. [24] H.R. Ovesy, M. Asghari Mooneghi, M. Kharazi, Post-buckling analysis of delaminated composite laminates with multiple through-the-width delaminations using a novel layerwise theory, Thin-Walled Struct. 94 (2015) 98–106. doi:10.1016/j.tws.2015.03.028. [25] H.R. Ovesy, M. Kharazi, Compressional stability behavior of composite plates with through-the-width and embedded delaminations by using first order shear deformation theory, in: Comput. Struct., Elsevier Ltd, 2011: pp. 1829–1839. doi:10.1016/j.compstruc.2010.10.016. [26] J.H. Xue, Q.Z. Luo, F. Han, R.H. Liu, Two-dimensional analyses of delamination buckling of symmetrically cross-ply rectangular laminates, Appl. Math. Mech. (English Ed. 34 (2013) 597–612. doi:10.1007/s10483-013-1694-7. [27] H.R. Ovesy, M. Taghizadeh, M. Kharazi, Post-buckling analysis of composite plates containing embedded delaminations with arbitrary shape by using higher order shear deformation theory, Compos. Struct. 94 (2012) 1243–1249. doi:10.1016/j.compstruct.2011.11.011. [28] N. Kharghani, C. Guedes Soares, Behavior of composite laminates with embedded delaminations, Compos. Struct. 150 (2016) 226–239. doi:10.1016/j.compstruct.2016.04.042. [29] H.J. Kim, C.S. Hong, Buckling and postbuckling behavior of composite laminates with a delamination, Compos. Sci. Technol. 57 (1997) 557–564. doi:10.1016/S0266-3538(97)00011-0. [30] M.K. Yeh, C.M. Tan, Buckling of Elliptically Delaminated Composite Plates, J. Compos. Mater. 28 (1994) 36–52. doi:10.1177/002199839402800103. [31] M. Ali Kouchakzadeh, H. Sekine, Compressive buckling analysis of rectangular composite laminates containing multiple delaminations, Compos. Struct. 50 (2000) 249–255. doi:10.1016/S0263-8223(00)00100-8. [32] A. Tafreshi, T. Oswald, Global buckling behaviour and local damage propagation in composite plates with embedded delaminations, Int. J. Press. Vessel. Pip. 80 (2003) 9–20. doi:10.1016/S0308-0161(02)00152-7. [33] H. Hosseini-toudeshky, S. Hosseini, B. Mohammadi, Delamination buckling growth in laminated composites using layerwise-interface element, Compos. Struct. 92 (2010) 1846–1856. doi:10.1016/j.compstruct.2010.01.013. [34] Z. Juhász, A. Szekrényes, Progressive buckling of a simply supported delaminated orthotropic rectangular composite plate, Int. J. Solids Struct. 69–70 (2015) 217–229. doi:10.1016/j.ijsolstr.2015.05.028. [35] Z. Kutlu, fu K. Chang, Modeling Compression Failure of laminated Composites Containing Multiple Through-the-Width Delaminations, J. Compos. Mater. 26 (1992) 350–387. doi:10.1177/002199839202600303. [36] S.F. Nikrad, S. Keypoursangsari, H. Asadi, A.H. Akbarzadeh, Z.T. Chen, Computational study on compressive instability of composite plates with off-center delaminations, Comput. Methods Appl. Mech. Eng. 310 (2016) 429–459. doi:10.1016/j.cma.2016.07.021. [37] A. Köllner, M. Kashtalyan, I. Guz, C. Völlmecke, On the interaction of delamination buckling and damage growth in cross-ply laminates, Int. J. Solids Struct. 202 (2020) 912–928. doi:10.1016/j.ijsolstr.2020.05.035. [38] Y. Zhang, S. Wang, Buckling, post-buckling and delamination propagation in debonded composite laminates Part 1 : Theoretical development, Compos. Struct. 88 (2009) 121–130. doi:10.1016/j.compstruct.2008.02.013. [39] M. Marjanović, D. Vuksanović, Layerwise solution of free vibrations and buckling of laminated composite and sandwich plates with embedded delaminations, Compos. Struct. 108 (2014) 9–20. doi:10.1016/j.compstruct.2013.09.006. [40] E.J. Barbero, J.N. Reddy, Modeling of delamination in composite laminates using a layer-wise plate theory, Int. J. Solids Struct. 28 (1991) 373–388. doi:10.1016/0020-7683(91)90200-Y. [41] D.H. Li, Delamination and transverse crack growth prediction for laminated composite plates and shells, Comput. Struct. 177 (2016) 39–55. doi:10.1016/j.compstruc.2016.07.011. [42] N. Kharghani, C. Guedes Soares, Influence of different parameters on the deflection of composite laminates containing through-the-width delamination using Layerwise HSDT, Compos. Struct. 132 (2015) 341–349. doi:10.1016/j.compstruct.2015.05.040. [43] I. Sheinman, M. Soffer, Post-buckling analysis of composite delaminated beams, Int. J. Solids Struct. 27 (1991) 639–646. doi:10.1016/0020-7683(91)90218-5. [44] H. Chai, C.D. Babcock, Two-Dimensional Modelling of Compressive Failure in Delaminated Laminates, J. Compos. Mater. 19 (1985) 67–98. doi:10.1177/002199838501900105. [45] N. Hu, Buckling analysis of delaminated laminates with consideration of contact in buckling mode, Int. J. Numer. Methods Eng. 44 (1999) 1457–1479. doi:10.1002/(SICI)1097-0207(19990410)44:10<1457::AID-NME545>3.0.CO;2-9. [46] A. Tafreshi, Delamination buckling and postbuckling in composite cylindrical shells under external pressure, Thin-Walled Struct. 42 (2004) 1379–1404. doi:10.1016/j.tws.2004.05.008. [47] A. Tafreshi, Delamination buckling and postbuckling in composite cylindrical shells under combined axial compression and external pressure, Compos. Struct. 72 (2006) 401–418. doi:10.1016/j.compstruct.2005.01.009. [48] A. Tafreshi, Efficient modelling of delamination buckling in composite cylindrical shells under axial compression, Compos. Struct. 64 (2004) 511–520. doi:10.1016/j.compstruct.2003.09.050. [49] L.X. Peng, K.M. Liew, S. Kitipornchai, Buckling and free vibration analyses of stiffened plates using the FSDT mesh-free method, J. Sound Vib. 289 (2006) 421–449. doi:10.1016/j.jsv.2005.02.023. [50] A. Karrech, M. Elchalakani, M. Attar, A.C. Seibi, Buckling and post-buckling analysis of geometrically non-linear composite plates exhibiting large initial imperfections, Compos. Struct. 174 (2017) 134–141. doi:10.1016/j.compstruct.2017.04.029. [51] M. Aydogdu, T. Aksencer, Buckling of cross-ply composite plates with linearly varying In-plane loads, Compos. Struct. 183 (2017) 221–231. doi:10.1016/j.compstruct.2017.02.085. [52] M. Song, J. Yang, S. Kitipornchai, Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Compos. Part B Eng. 134 (2018) 106–113. doi:10.1016/j.compositesb.2017.09.043. [53] J.M. Whitney, Shear correction factors for orthotropic laminates under static load, J. Appl. Mech. Trans. ASME. 40 (1973) 302–304. doi:10.1115/1.3422950. [54] P. Gaudenzi, P. Perugini, F. Spadaccia, Post-buckling analysis of a delaminated composite plate under compression, Compos. Struct. 40 (1997) 231–238. doi:10.1016/S0263-8223(98)00013-0. [55] S.F. Hwang, S.M. Huang, Postbuckling behavior of composite laminates with two delaminations under uniaxial compression, Compos. Struct. 68 (2005) 157–165. doi:10.1016/j.compstruct.2004.03.010. [56] F. Cappello, D. Tumino, Numerical analysis of composite plates with multiple delaminations subjected to uniaxial buckling load, Compos. Sci. Technol. 66 (2006) 264–272. doi:10.1016/j.compscitech.2005.04.036. [57] S.L. Donaldson, The effect of interlaminar fracture properties on the delamination buckling of composite laminates, Compos. Sci. Technol. 28 (1987) 33–44. doi:10.1016/0266-3538(87)90060-1. [58] R.G. Wang, L. Zhang, J. Zhang, W.B. Liu, X.D. He, Numerical analysis of delamination buckling and growth in slender laminated composite using cohesive element method, Comput. Mater. Sci. 50 (2010) 20–31. doi:10.1016/j.commatsci.2010.07.003. [59] J.D. Whitcomb, Analysis of instability-related growth of a through-width delamination, NASA Tech. Memo. (1984). [60] J.D. Whitcomb, Finite Element Analysis of Instability Related Delamination Growth, J. Compos. Mater. 15 (1981) 403–426. doi:10.1177/002199838101500502. [61] A. Chattopkdhyay, H. Gu, New higher order plate theory in modeling delamination buckling of composite laminates, AIAA J. 32 (1994) 1709–1716. doi:10.2514/3.12163. [62] K. Wang, L. Zhao, H. Hong, Y. Gong, J. Zhang, N. Hu, An analytical model for evaluating the buckling, delamination propagation, and failure behaviors of delaminated composites under uniaxial compression, Compos. Struct. 223 (2019). doi:10.1016/j.compstruct.2019.110937. [63] H. Chai, Three-dimensional fracture analysis of thin-film debonding, 1990. [64] B. Mohammadi, F. Shahabi, S.A.M. Ghannadpour, Post-buckling delamination propagation analysis using interface element with de-cohesive constitutive law, in: Procedia Eng., 2011: pp. 1797–1802. doi:10.1016/j.proeng.2011.04.299. [65] S. Wang, Y. Zhang, Buckling, post-buckling and delamination propagation in debonded composite laminates Part 2: Numerical applications, Compos. Struct. 88 (2009) 131–146. doi:10.1016/j.compstruct.2008.02.012. [66] N. Kharghani, C. Guedes Soares, Experimental, numerical and analytical study of buckling of rectangular composite laminates, Eur. J. Mech. A/Solids. 79 (2020) 103869. doi:10.1016/j.euromechsol.2019.103869. [67] M.A. Crisfield, A fast incremental/iterative solution procedure that handles “snap-through,” Comput. Struct. 13 (1981) 55–62. doi:10.1016/0045-7949(81)90108-5. [68] K. Liang, Q. Sun, Buckling and post-buckling analysis of the delaminated composite plates using the Koiter–Newton method, Compos. Struct. 168 (2017) 266–276. doi:10.1016/j.compstruct.2017.01.038. [69] S. Nojavan, D. Schesser, Q.D. Yang, An in situ fatigue-CZM for unified crack initiation and propagation in composites under cyclic loading, 146 (2016) 34–49. doi:10.1016/j.compstruct.2016.02.060. [70] M. Cetkovic, Thermal buckling of laminated composite plates using layerwise displacement model, Compos. Struct. 142 (2016) 238–253. doi:10.1016/j.compstruct.2016.01.082. [71] A.W. Leissa, Buckling of composite plates, Compos. Struct. 1 (1983) 51–66. doi:10.1016/0263-8223(83)90016-8. [72] R.M. Jones, Thermal buckling of uniformly heated unidirectional and symmetric cross-ply laminated fiber-reinforced composite uniaxial in-plane restrained simply supported rectangular plates, Compos. Part A Appl. Sci. Manuf. 36 (2005) 1355–1367. doi:10.1016/j.compositesa.2005.01.028. [73] M.P. Nemeth, M.P. Nemeth, Buckling Behavior of Long Anisotropic Plates Subjected To Restrained Thermal Expansion and Mechanical Loads Subjected To Restrained Thermal Expansion and Mechanical Loads, 5739 (2016). doi:10.1080/014957300750040122. [74] M.P. Nemeth, Buckling of long compression-loaded anisotropic plates restrained against inplane lateral and shear deformations, in: 44th AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., 2003: pp. 1–37. [75] L.-C. Shiau, S.-Y. Kuo, C.-Y. Chen, Thermal buckling behavior of composite laminated plates, Compos. Struct. 92 (2010) 508–514. doi:10.1016/j.compstruct.2009.08.035. [76] A.N. Sherbourne, M.D. Pandey, Differential quadrature method in the buckling analysis of beams and composite plates, Comput. Struct. 40 (1991) 903–913. doi:http://dx.doi.org/10.1016/0045-7949(91)90320-L. [77] S.F. Bassily, S.M. Dickinson, Buckling and lateral vibration of rectangular plates subject to inplane loads-a Ritz approach, J. Sound Vib. 24 (1972) 219–239. doi:10.1016/0022-460X(72)90951-0. [78] S.Y. Kuo, L.C. Shiau, Buckling and vibration of composite laminated plates with variable fiber spacing, Compos. Struct. 90 (2009) 196–200. doi:10.1016/j.compstruct.2009.02.013. [79] Z. Gürdal, B.F. Tatting, C.K. Wu, Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response, Compos. Part A Appl. Sci. Manuf. 39 (2008) 911–922. doi:10.1016/j.compositesa.2007.11.015. [80] G. Raju, Z. Wu, B.C. Kim, P.M. Weaver, Prebuckling and buckling analysis of variable angle tow plates with general boundary conditions, Compos. Struct. 94 (2012) 2961–2970. doi:10.1016/j.compstruct.2012.04.002. [81] Z. Wu, P.M. Weaver, G. Raju, B. Chul Kim, Buckling analysis and optimisation of variable angle tow composite plates, Thin-Walled Struct. 60 (2012) 163–172. doi:10.1016/J.TWS.2012.07.008. [82] B.H. Coburn, Z. Wu, P.M. Weaver, Buckling analysis of stiffened variable angle tow panels, Compos. Struct. 111 (2014) 259–270. doi:10.1016/J.COMPSTRUCT.2013.12.029. [83] M. Song, J. Yang, S. Kitipornchai, W. Zhu, Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates, Int. J. Mech. Sci. 131–132 (2017) 345–355. doi:10.1016/j.ijmecsci.2017.07.017. [84] M.Z. Kabir, B. Tavousi Tehrani, Closed-form solution for thermal, mechanical, and thermo-mechanical buckling and post-buckling of SMA composite plates, Compos. Struct. 168 (2017) 535–548. doi:10.1016/j.compstruct.2017.02.046. [85] R.F. Palardy, A.N. Palazotto, Buckling and vibration of composite plates using the Levy method, Compos. Struct. 14 (1990) 61–86. doi:10.1016/0263-8223(90)90059-N. [86] A. Nosier, J.N. Reddy, Vibration and stability analysis of cross-ply laminated circular cylindrical shells, J. Sound Vib. 157 (1992) 139–159. [87] A. Nosier, J.N. Reddy, On vibration and buckling of symmetric laminated plates according to shear deformation theories - Part I, Acta Mech. 94 (1992) 123–144. doi:10.1007/BF01176647. [88] A. Alesadi, M. Galehdari, S. Shojaee, Free vibration and buckling analysis of cross-ply laminated composite plates using Carrera’s unified formulation based on Isogeometric approach, Comput. Struct. 183 (2017) 38–47. doi:10.1016/j.compstruc.2017.01.013. [89] D.B. Singh, B.N. Singh, New higher order shear deformation theories for free vibration and buckling analysis of laminated and braided composite plates, Int. J. Mech. Sci. 131–132 (2017) 265–277. doi:10.1016/j.ijmecsci.2017.06.053. [90] A.S. Sayyad, Y.M. Ghugal, On the Buckling of Isotropic , Transversely Isotropic, 2014. doi:10.1142/S0219455414500205. [91] T. Özben, Analysis of critical buckling load of laminated composites plate with different boundary conditions using FEM and analytical methods, Comput. Mater. Sci. 45 (2009) 1006–1015. doi:10.1016/j.commatsci.2009.01.003. [92] G.B. Chai, Buckling of generally laminated composite plates with various edge support conditions Gin, 29 (1994) 299–310. [93] S.T. Smith, M.A. Bradford, D.J. Oehlers, Numerical convergence of simple and orthogonal polynomials for the unilateral plate buckling problem using the Rayleigh-Ritz method, Int. J. Numer. Methods Eng. 44 (1999) 1685–1707. doi:10.1002/(SICI)1097-0207(19990420)44:11<1685::AID-NME562>3.0.CO;2-9. [94] M. Aydin Komur, M. Sonmez, Elastic buckling of rectangular plates under linearly varying in-plane normal load with a circular cutout, Mech. Res. Commun. 35 (2008) 361–371. doi:10.1016/j.mechrescom.2008.01.005. [95] K. Liang, M. Ruess, M. Abdalla, The Koiter-Newton approach using von Ka´rma´n kinematics for buckling analyses of imperfection sensitive structures, Comput. Methods Appl. Mech. Eng. 279 (2014) 440–468. doi:10.1016/j.cma.2014.07.008. [96] P. Dhurvey, Buckling analysis of composite laminated skew plate of variable thickness, Mater. Today Proc. 4 (2017) 9732–9736. doi:10.1016/j.matpr.2017.06.257. [97] L.W. Chen, L.Y. Chen, Thermal buckling of laminated composite plates, J. Therm. Stress. 10 (1987) 345–356. doi:10.1080/01495738708927017. [98] S. Tahaei Yaghoubi, S.M. Mousavi, J. Paavola, Buckling of centrosymmetric anisotropic beam structures within strain gradient elasticity, Int. J. Solids Struct. 109 (2017) 84–92. doi:10.1016/j.ijsolstr.2017.01.009. [99] I.U. Cagdas, S. Adali, Buckling of cross-ply laminates subject to linearly varying compressive loads and in-plane boundary restraints, J. Thermoplast. Compos. Mater. 26 (2013) 193–215. doi:10.1177/0892705711420594. [100] S. Ilanko, L.E. Monterrubio, The Rayleigh-Ritz Method for Structural Analysis, 2014. [101] C.M. Wang, Y.C. Wang, J.N. Reddy, Problems and remedy for the Ritz method in determining stress resultants of corner supported rectangular plates, Comput. Struct. 80 (2002) 145–154. doi:10.1016/S0045-7949(01)00168-7. [102] C.M. Wang, Y.C. Wang, J.N. Reddy, V. Thevendran, Improved Computation of Stress Resultants in the, Managing. 128 (2002) 249–258. doi:10.1061/(ASCE)0733-9445(2002)128:2(249). [103] L.M. Kachanov, Separation failure of composite materials, Polym. Mech. 12 (1976) 812–815. doi:10.1007/BF00856347. [104] H. Chai, Buckling and post-buckling behavior of elliptical plates: Part II-Results, J. Appl. Mech. Trans. ASME. 57 (1990) 981–988. doi:10.1115/1.2897671. [105] H. Chai, Buckling and post-buckling behavior of elliptical plates: Part I-analysis, J. Appl. Mech. Trans. ASME. 57 (1990) 981–988. doi:10.1115/1.2897671. [106] B. Storåkers, B. Andersson, Nonlinear plate theory applied to delamination in composites, J. Mech. Phys. Solids. 36 (1988) 689–718. doi:10.1016/0022-5096(88)90004-X. [107] Y. Wan-Lee, Axisymmetric buckling and growth of a circular delamination in a compressed laminate, Int. J. Solids Struct. 21 (1985) 503–514. doi:10.1016/0020-7683(85)90011-3. [108] N. Kharghani, C. Guedes Soares, Analytical and experimental study of the ultimate strength of delaminated composite laminates under compressive loading, Compos. Struct. (2019) 111355. doi:10.1016/j.compstruct.2019.111355. [109] S. Wang, Y. Zhang, S. Wang, Buckling , post-buckling and delamination propagation in debonded composite laminates Part 1 : Theoretical development, Compos. Struct. 88 (2009) 131–146. doi:10.1016/j.compstruct.2008.02.012. [110] C.M. Wang, Y.C. Wang, J.N. Reddy, V. Thevendran, Improved Computation of Stress Resultants in the p-Ritz Method, J. Struct. Eng. 128 (2002) 249–258. doi:10.1061/(ASCE)0733-9445(2002)128:2(249). [111] D. Bruno, F. Greco, An asymptotic analysis of delamination buckling and growth in layered plates, Int. J. Solids Struct. 37 (2000) 6239–6276. doi:10.1016/S0020-7683(99)00281-4. [112] J.D. Whitcomb, K.N. Shivakumar, Strain-Energy Release Rate Analysis of a Laminate with a Postbuckled Delamination, NASA Tech. Memo. 89091 (1987). [113] H. Gu, A. Chattopadhyay, An experimental investigation of delamination buckling and post buckling of composite laminates, Compos. Sci. Technol. 59 (1999) 903–910. [114] M.A. Crisfield, A fast incremental/iterative solution procedure that handles “snap-through,” Comput. Struct. 13 (1981) 55–62. doi:10.1016/0045-7949(81)90108-5. [115] J.N. Reddy, a. Khdeir, Buckling and vibration of laminated composite plates using various plate theories, AIAA J. 27 (1989) 1808–1817. doi:10.2514/3.10338. [116] N. Grover, D.K. Maiti, B.N. Singh, A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates, Compos. Struct. 95 (2013) 667–675. doi:10.1016/j.compstruct.2012.08.012. [117] J.L. Mantari, F.G. Canales, Free vibration and buckling of laminated beams via hybrid Ritz solution for various penalized boundary conditions, Compos. Struct. 152 (2016) 306–315. doi:10.1016/j.compstruct.2016.05.037. [118] A.K. Upadhyay, · K K Shukla, Post-buckling analysis of skew plates subjected to combined in-plane loadings, Acta Mech. 225 (2014) 2959–2968. doi:10.1007/s00707-014-1205-2. [119] L. Librescu, A.A. Khdeir, D. Frederick, A shear deformable theory of laminated composite shallow shell-type panels and their response analysis I: Free vibration and buckling, Acta Mech. 76 (1989) 1–33. doi:10.1007/BF01175794. [120] G.J. Simitses, J. Giri, Buckling of Rotationally Restrained Orthotropic Plates Under Uniaxial Compression, Compos. Mater. 11 (1978) 345–364. doi:10.1177/002199837701100308. [121] E. Jaberzadeh, M. Azhari, Elastic and inelastic local buckling of stiffened plates subjected to non-uniform compression using the Galerkin method, Appl. Math. Model. 33 (2009) 1874–1885. doi:10.1016/j.apm.2008.03.020. [122] R. Vescovini, C. Bisagni, Single-mode solution for post-buckling analysis of composite panels with elastic restraints loaded in compression, Compos. Part B Eng. 43 (2012) 1258–1274. doi:10.1016/j.compositesb.2011.08.029. [123] Q. Chen, P. Qiao, Shear buckling of rotationally-restrained composite laminated plates, Thin-Walled Struct. 94 (2015) 147–154. doi:10.1016/j.tws.2015.04.006. [124] P. Qiao, G. Zou, Local buckling of elastically restrained fiber-reinforced plastic plates and its application to box sections, J. Eng. Mech. 128 (2002) 1324–1330. doi:10.1061/(ASCE)0733-9399(2002)128:12(1324). [125] P. Qiao, G. Zou, Local Buckling of Composite Fiber-Reinforced Plastic Wide-Flange Sections, J. Struct. Eng. 129 (2003) 125–129. doi:10.1061/(ASCE)0733-9445(2003)129:1(125). [126] C. Mittelstedt, Stability behaviour of arbitrarily laminated composite plates with free and elastically restrained unloaded edges, Int. J. Mech. Sci. 49 (2007) 819–833. doi:10.1016/j.ijmecsci.2006.11.011. [127] D.G. Stamatelos, G.N. Labeas, K.I. Tserpes, Analytical calculation of local buckling and post-buckling behavior of isotropic and orthotropic stiffened panels, Thin-Walled Struct. 49 (2011) 422–430. doi:10.1016/j.tws.2010.11.008. [128] P. Qiao, L. Shan, Explicit local buckling analysis and design of fiber-reinforced plastic composite structural shapes, Compos. Struct. 70 (2005) 468–483. doi:10.1016/j.compstruct.2004.09.005. [129] L. Shan, P. Qiao, Explicit local buckling analysis of rotationally restrained composite plates under uniaxial compression, Eng. Struct. 30 (2008) 126–140. doi:10.1016/j.engstruct.2007.02.023. [130] P. Qiao, X. Huo, Explicit local buckling analysis of rotationally-restrained orthotropic plates under uniform shear, Compos. Struct. 93 (2011) 2785–2794. doi:10.1016/j.compstruct.2011.05.026. [131] E. Villarreal, D. Abajo, Buckling and modal analysis of rotationally restrained orthotropic plates, Prog. Aerosp. Sci. 78 (2015) 116–130. doi:10.1016/j.paerosci.2015.06.005. [132] L.E. Monterrubio, Frequency and buckling parameters of box-type structures using the Rayleigh-Ritz method and penalty parameters, Comput. Struct. 104–105 (2012) 44–49. doi:10.1016/j.compstruc.2012.03.010. [133] J.W. Pizhong Qiao, Julio F. Davalos, Local buckling of composite FRP shapes by discrete plate analysis, 127 (2001) 245–255. [134] L.C. Bank, J. Yin, Buckling of orthotropic plates with free and rotationally restrained unloaded edges, Thin-Walled Struct. 24 (1996) 83–96. doi:10.1016/0263-8231(95)00036-4. [135] S.M.R. Khalili, P. Abbaspour, K. Malekzadeh Fard, Buckling of non-ideal simply supported laminated plate on Pasternak foundation, Appl. Math. Comput. 219 (2013) 6420–6430. doi:10.1016/J.AMC.2012.12.056. [136] T. Mizusawa, T. Kajita, Vibration and buckling of rectangular plates with nonuniform elastic constraints in rotation, Int. J. Solids Struct. 23 (1987) 45–55. doi:10.1016/0020-7683(87)90031-X. [137] Q. Chen, P. Qiao, Buckling analysis of laminated plate structures with elastic edges using a novel semi-analytical finite strip method, Compos. Struct. 152 (2016) 85–95. doi:10.1016/j.compstruct.2016.05.008. [138] J.M. Housner, M. Stein, Numerical analysis and parametric study of the buckling of composite orthotropic compression and shear panels, NASA TN D-7996. (1975). [139] A. Shirkavand, F. Taheri-Behrooz, M. Omidi, Orientation and size effect of a rectangle cutout on the buckling of composite cylinders, Aerosp. Sci. Technol. 87 (2019) 488–497. doi:10.1016/J.AST.2019.02.042. [140] R. ARNOLD, S. YOO, Buckling, postbuckling, and crippling of shallow curved composite plates with edge stiffeners, 26th Struct. Struct. Dyn. Mater. Conf. 23 (1985) 589–598. doi:doi:10.2514/6.1985-769. [141] N. Jaunky, K. Jr, An assessment of shell theories for buckling of circular cylindrical laminated composite panels loaded in axial compression, Int. J. Solids Struct. 36 (1999) 3799–3820. doi:10.1016/S0020-7683(98)00177-2. [142] J.M. Whitney, Structural Analysis of Anisotropic Laminated plates, Technomic Publishing Company, Inc., 1987. [143] R. Ganesan, S. Akhlaque-E-Rasul, Compressive response of tapered composite shells, Compos. Struct. 93 (2011) 2153–2162. doi:10.1016/j.compstruct.2011.02.010. [144] Elmer Franklin Bruhn, Analysis and Design of Flight Vehicle Structures, Jacobs Publishing, Inc., 1973. [145] M.P. Nemeth, Nondimensional parameters and equations for nonlinear and bifurcation analyses of thin anisotropic quasi-shallow shells, J. Appl. Mech. 61 (1994) 664–669. [146] Z. Aslan, M. Şahin, Buckling behavior and compressive failure of composite laminates containing multiple large delaminations, Compos. Struct. 89 (2009) 382–390. doi:10.1016/j.compstruct.2008.08.011. [147] S. Shoja, V. Berbyuk, A. Boström, Delamination detection in composite laminates using low frequency guided waves: Numerical simulations, Compos. Struct. 203 (2018) 826–834. doi:10.1016/j.compstruct.2018.07.025.