Ackley, B. D. (2014). Wnt-signaling and planar cell polarity genes regulate axon guidance along the anteroposterior axis in C. elegans. Developmental Neurobiology, 74(8), 781–796. https://doi.org/10.1002/dneu.22146 Ahnn, J., & Fire, A. (1994). A screen for genetic loci required for body-wall muscle development during embryogenesis in Caenorhabditis elegans. Genetics, 137(2), 483–498. https://doi.org/10.1093/genetics/137.2.483 Barnes, K. M., Fan, L., Moyle, M. W., Brittin, C. A., Xu, Y., Colón-Ramos, D. A., Santella, A., & Bao, Z. (2020). Cadherin preserves cohesion across involuting tissues during C. Elegans neurulation. ELife, 9, 1–19. https://doi.org/10.7554/eLife.58626 Beatty, A., Morton, D., & Kemphues, K. (2010). The C. elegans homolog of Drosophila Lethal giant larvae functions redundantly with PAR-2 to maintain polarity in the early embryo. Development (Cambridge, England), 137(23), 3995–4004. https://doi.org/10.1242/DEV.056028 Bernadskaya, Y. Y., Wallace, A., Nguyen, J., Mohler, W. A., & Soto, M. C. (2012). UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph Polarize F-Actin during Embryonic Morphogenesis by Regulating the WAVE/SCAR Actin Nucleation Complex. PLoS Genetics, 8(8). https://doi.org/10.1371/journal.pgen.1002863 Bilder, D., Schober, M., & Perrimon, N. (2003). Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biology 5. https://doi.org/10.1038/ncb897 Blankenship, J. T., Backovic, S. T., Sanny, J. S. S. P., Weitz, O., & Zallen, J. A. (2006). Multicellular Rosette Formation Links Planar Cell Polarity to Tissue Morphogenesis. Developmental Cell, 11(4), 459–470. https://doi.org/10.1016/j.devcel.2006.09.007 Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71–94. https://doi.org/10.1093/genetics/77.1.71 Brose, K., Bland, K., Wang, K., Arnott, D., Henzel, W., Goodman, C., Tessier-Lavigne, M., & Kidd, T. (1999). Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell, 96(6), 795–806. https://doi.org/10.1016/S0092-8674(00)80590-5 Chanal, P., & Labouesse, M. (1997). A screen for genetic loci required for hypodermal cell and glial-like cell development during Caenorhabditis elegans embryogenesis. Genetics, 146(1), 207–226. /pmc/articles/PMC1207936/?report=abstract Chin-Sang, I. D., George, S. E., Ding, M., Moseley, S. L., Lynch, A. S., & Chisholm, A. D. (1999). The ephrin VAB-2/EFN-1 functions in neuronal signaling to regulate epidermal morphogenesis in C. elegans. Cell, 99(7), 781–790. https://doi.org/10.1016/S0092-8674(00)81675-X Chisholm, A. D., & Hardin, J. (2005). Epidermal morphogenesis. WormBook : The Online Review of C. Elegans Biology, 1–22. https://doi.org/10.1895/wormbook.1.35.1 Clainche, C. Le, & Carlier, M.-F. (2008). Regulation of Actin Assembly Associated With Protrusion and Adhesion in Cell Migration. Physiological Reviews, 88(2), 489–513. https://doi.org/10.1152/PHYSREV.00021.2007 Costa, M., Raich, W., Agbunag, C., B, L., Hardin, J., & Priess, J. R. (1998). A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. The Journal of Cell Biology, 141(1), 297–308. https://doi.org/10.1083/JCB.141.1.297 Drubin, D. G., & Nelson, W. J. (1996). Origins of Cell Polarity Review. In Cell (Vol. 84). Fan, L., Kovacevic, I., Heiman, M. G., & Bao, Z. (2019). A multicellular rosette-mediated collective dendrite extension. ELife, 8. https://doi.org/10.7554/eLife.38065 Fotopoulos, N., Wernike, D., Chen, Y., Makil, N., Marte, A., & Piekny, A. (2013). Caenorhabditis elegans anillin (ani-1) regulates neuroblast cytokinesis and epidermal morphogenesis during embryonic development. Developmental Biology, 383(1), 61–74. https://doi.org/10.1016/j.ydbio.2013.08.024 Gettner, S. N., Kenyon, C., & Reichardt, L. F. (1995). Characterization of βpat-3 heterodimers, a family of essential integrin receptors in C. elegans. Journal of Cell Biology, 129(4), 1127–1141. https://doi.org/10.1083/jcb.129.4.1127 Ghenea, S., Boudreau, J. R., Lague, N. P., & Chin-Sang, I. D. (2005). The VAB-1 Eph receptor tyrosine kinase and SAX-3/Robo neuronal receptors function together during C. elegans embryonic morphogenesis. Development, 132(16), 3679–3690. https://doi.org/10.1242/dev.01947 Goley, E. D., & Welch, M. D. (2006). The ARP2/3 complex: An actin nucleator comes of age. In Nature Reviews Molecular Cell Biology (Vol. 7, Issue 10, pp. 713–726). https://doi.org/10.1038/nrm2026 Grimbert, S., Mastronardi, K., Richard, V., Christensen, R., Law, C., Zardoui, K., Fay, D., & Piekny, A. (2021). Multi-tissue patterning drives anterior morphogenesis of the C. elegans embryo. Developmental Biology, 471, 49–64. https://doi.org/10.1016/j.ydbio.2020.12.003 Harding, M. J., McGraw, H. F., & Nechiporuk, A. (2014). The roles and regulation of multicellular rosette structures during morphogenesis. Development (Cambridge), 141(13), 2549–2558. https://doi.org/10.1242/dev.101444 Hoege, C., & Hyman, A. A. (2013). Principles of PAR polarity in Caenorhabditis elegans embryos. In Nature Reviews Molecular Cell Biology (Vol. 14, Issue 5, pp. 315–322). https://doi.org/10.1038/nrm3558 Ikegami, R., Simokat, K., Zheng, H., Brown, L., Garriga, G., Hardin, J., & Culotti, J. (2012). Semaphorin and Eph receptor signaling guide a series of cell movements for ventral enclosure in C. elegans. Current Biology, 22(1), 1–11. https://doi.org/10.1016/j.cub.2011.12.009 Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G., & Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biology, 2(1). https://doi.org/10.1186/gb-2000-2-1-research0002 Korswagen, H. C. (2002). Canonical and non-canonical Wnt signaling pathways in Caenorhabditis elegans: variations on a common signaling theme. BioEssays, 24(9), 801–810. https://doi.org/10.1002/BIES.10145 Kuzmanov, A., Yochem, J., & Fay, D. S. (2014). Analysis of PHA-1 reveals a limited role in pharyngeal development and novel functions in other tissues. Genetics, 198(1), 259–268. https://doi.org/10.1534/genetics.114.166876 Labouesse, M. (2006). Epithelial junctions and attachments. WormBook : The Online Review of C. Elegans Biology, 1–21. https://doi.org/10.1895/wormbook.1.56.1 Lecroisey, C., Ségalat, L., & Gieseler, K. (2007). The C. elegans dense body: Anchoring and signaling structure of the muscle. In Journal of Muscle Research and Cell Motility (Vol. 28, Issue 1, pp. 79–87). Springer Netherlands. https://doi.org/10.1007/s10974-007-9104-y Low, I. I. C., Williams, C. R., Chong, M. K., McLachlan, I. G., Wierbowski, B. M., Kolotuev, I., & Heiman, M. G. (2019). Morphogenesis of neurons and glia within an epithelium. Development (Cambridge), 146(4). https://doi.org/10.1242/dev.171124 Mango, S. E. (2007). The C. elegans pharynx: a model for organogenesis. WormBook : The Online Review of C. Elegans Biology, 1–26. https://doi.org/10.1895/wormbook.1.129.1 Mango, S. E., Lambie, E. J., & Kimble, J. (1994). The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development, 120(10), 3019–3031. https://doi.org/10.1242/dev.120.10.3019 Martin, A. C., & Goldstein, B. (2014). Apical constriction: Themes and variations on a cellular mechanism driving morphogenesis. In Development (Cambridge) (Vol. 141, Issue 10, pp. 1987–1998). Company of Biologists Ltd. https://doi.org/10.1242/dev.102228 Mentink, R. A., Middelkoop, T. C., Rella, L., Ji, N., Tang, C. Y., Betist, M. C., vanOudenaarden, A., & Korswagen, H. C. (2014). Cell intrinsic modulation of wnt signaling controls neuroblast migration in c.elegans. Developmental Cell, 31(2), 188–201. https://doi.org/10.1016/j.devcel.2014.08.008 Motegi, F., & Sugimoto, A. (2006). Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos. Nature Cell Biology 2006 8:9, 8(9), 978–985. https://doi.org/10.1038/ncb1459 Munro, E., Nance, J., & Priess, J. R. (2004). Cortical Flows Powered by Asymmetrical Contraction Transport PAR Proteins to Establish and Maintain Anterior-Posterior Polarity in the Early C. elegans Embryo. Developmental Cell, 7(3), 413–424. https://doi.org/10.1016/J.DEVCEL.2004.08.001 Nobes, C. D., & Hall, A. (1995). Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81(1), 53–62. https://doi.org/10.1016/0092-8674(95)90370-4 Ouellette, M. H., Martin, E., Lacoste-Caron, G., Hamiche, K., & Jenna, S. (2016). Spatial control of active CDC-42 during collective migration of hypodermal cells in Caenorhabditis elegans. Journal of Molecular Cell Biology, 8(4), 313–327. https://doi.org/10.1093/jmcb/mjv062 Patel, F. B., Bernadskaya, Y. Y., Chen, E., Jobanputra, A., Pooladi, Z., Freeman, K. L., Gally, C., Mohler, W. A., & Soto, M. C. (2008). The WAVE/SCAR complex promotes polarized cell movements and actin enrichment in epithelia during C. elegans embryogenesis. Developmental Biology, 324(2), 297–309. https://doi.org/10.1016/j.ydbio.2008.09.023 Portereiko, M. F., & Mango, S. E. (2001). Early morphogenesis of the Caenorhabditis elegans pharynx. Developmental Biology, 233(2), 482–494. https://doi.org/10.1006/dbio.2001.0235 Portereiko, M. F., Saam, J., & Mango, S. E. (2004). ZEN-4/MKLP1 is required to polarize the foregut epithelium. Current Biology, 14(11), 932–941. https://doi.org/10.1016/j.cub.2004.05.052 Raich, W. B., Agbunag, C., & Hardin, J. (1999). Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Current Biology, 9(20), 1139–1146. https://doi.org/10.1016/S0960-9822(00)80015-9 Rapti, G., Li, C., Shan, A., Lu, Y., & Shaham, S. (2017). Glia initiate brain assembly through noncanonical Chimaerin-Furin axon guidance in C. elegans. Nature Neuroscience, 20(10), 1350–1360. https://doi.org/10.1038/nn.4630 Rasmussen, J. P., Reddy, S. S., & Priess, J. R. (2012). Laminin is required to orient epithelial polarity in the C. elegans pharynx. Development, 139(11), 2050–2060. https://doi.org/10.1242/dev.078360 Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., & Horwitz, A. R. (2003). Cell Migration: Integrating Signals from Front to Back. In Science (Vol. 302, Issue 5651, pp. 1704–1709). American Association for the Advancement of Science. https://doi.org/10.1126/science.1092053 Rodriguez-Boulan, E., & Macara, I. G. (2014). Organization and execution of the epithelial polarity programme. Nature Reviews Molecular Cell Biology 2014 15:4, 15(4), 225–242. https://doi.org/10.1038/nrm3775 Rodriguez-Diaz, A., Toyama, Y., Abravanel, D. L., Wiemann, J. M., Wells, A. R., Tulu, U. S., Edwards, G. S., & Kiehart, D. P. (2008). Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient. HFSP Journal, 2(4), 220. https://doi.org/10.2976/1.2955565 Rørth, P. (2009). Collective cell migration. Annual Review of Cell and Developmental Biology, 25, 407–429. https://doi.org/10.1146/annurev.cellbio.042308.113231 Shah, P. K., Tanner, M. R., Kovacevic, I., Rankin, A., Marshall, T. E., Noblett, N., Tran, N. N., Roenspies, T., Hung, J., Chen, Z., Slatculescu, C., Perkins, T. J., Bao, Z., & Colavita, A. (2017). PCP and SAX-3/Robo Pathways Cooperate to Regulate Convergent Extension-Based Nerve Cord Assembly in C. elegans. Developmental Cell, 41(2), 195-203.e3. https://doi.org/10.1016/j.devcel.2017.03.024 Sharma, M., Castro-Piedras, I., Simmons, G. E., Jr, & Pruitt, K. (2018). Dishevelled: a masterful conductor of complex Wnt signals. Cellular Signalling, 47, 52. https://doi.org/10.1016/J.CELLSIG.2018.03.004 Skiba, F., & Schierenberg, E. (1992). Cell lineages, developmental timing, and spatial pattern formation in embryos of free-living soil nematodes. Developmental Biology, 151(2), 597–610. https://doi.org/10.1016/0012-1606(92)90197-O Song, S., Zhang, B., Sun, H., Li, X., Xiang, Y., Liu, Z., Huang, X., & Ding, M. (2010). A wnt-frz/ror-dsh pathway regulates neurite outgrowth in caenorhabditis elegans. PLoS Genetics, 6(8), 1001056. https://doi.org/10.1371/journal.pgen.1001056 Sternberg, P. W. (1988). Lateral inhibition during vulval induction in Caenorhabditis elegans. Nature, 335(6190), 551–554. https://doi.org/10.1038/335551a0 Sternberg, P. W. (2005). Vulval development. In WormBook : the online review of C. elegans biology (pp. 1–28). WormBook. https://doi.org/10.1895/wormbook.1.6.1 Sternberg, P. W., & Horvitz, H. R. (1986). Pattern formation during vulval development in C. elegans. Cell, 44(5), 761–772. https://doi.org/10.1016/0092-8674(86)90842-1 Sulston, J. E., Schierenberg, E., White, J. G., & Thomson, J. N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. In Developmental Biology (Vol. 100, Issue 1, pp. 64–119). https://doi.org/10.1016/0012-1606(83)90201-4 Vitorino, P., & Meyer, T. (2008). Modular control of endothelial sheet migration. Genes & Development, 22(23), 3268–3281. https://doi.org/10.1101/GAD.1725808 Watts, J. L., Etemad-Moghadam, B., Guo, S., Boyd, L., Draper, B. W., Mello, C. C., Priess, J. R., & Kemphues, K. J. (1996). par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development, 122(10), 3133–3140. https://doi.org/10.1242/dev.122.10.3133 Wernike, D., Chen, Y., Mastronardi, K., Makil, N., & Piekny, A. (2016). Mechanical forces drive neuroblast morphogenesis and are required for epidermal closure. Developmental Biology, 412(2), 261–277. https://doi.org/10.1016/j.ydbio.2016.02.023 White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 314(1165), 1–340. https://doi.org/10.1098/rstb.1986.0056 Williams-Masson, E. M., Heid, P. J., Lavin, C. A., & Hardin, J. (1998). The cellular mechanism of epithelial rearrangement during morphogenesis of the Caenorhabditis elegans dorsal hypodermis. Developmental Biology, 204(1), 263–276. https://doi.org/10.1006/dbio.1998.9048 Williams-Masson, E. M., Malik, A. N., & Hardin, J. (1997). An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. Development, 124(15), 2889–2901. https://doi.org/10.1242/dev.124.15.2889 Williams, B. D., & Waterston, R. H. (1994). Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. Journal of Cell Biology, 124(4), 475–490. https://doi.org/10.1083/jcb.124.4.475 Zallen, J. A., Kirch, S. A., & Bargmann, C. I. (1999). Genes required for axon pathfinding and extension in the C. elegans nerve ring. Development, 126(16), 3679–3692. https://doi.org/10.1242/DEV.126.16.3679 Zallen, J. A., Yi, B. A., & Bargmann, C. I. (1998). The Conserved Immunoglobulin Superfamily Member SAX-3/Robo Directs Multiple Aspects of Axon Guidance in C. elegans. Cell, 92(2), 217–227. https://doi.org/10.1016/S0092-8674(00)80916-2 Zecca, M., Basler, K., & Struhl, G. (1996). Direct and long-range action of a wingless morphogen gradient. Cell, 87(5), 833–844. https://doi.org/10.1016/S0092-8674(00)81991-1 Zhang, L., Ward, J. D., Cheng, Z., & Dernburg, A. F. (2015). The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development, 142(24), 4374–4384. https://doi.org/10.1242/DEV.129635