Al-Deri, N., Okur, V., Ahimaz, P., Milev, M., Valivullah, Z., Hagen, J., Sheng, Y., Chung, W., Sacher, M., & Ganapathi, M. (2020). A novel homozygous variant in TRAPPC2L results in a neurodevelopmental disorder and disrupts TRAPP complex function. Journal of Medical Genetics. https://doi.org/10.1136/jmedgenet-2020-107016 Aridor, M., & Hannan, L. A. (2000). Traffic Jam: A Compendium of Human Diseases that Affect Intracellular Transport Processes. Traffic, 1(11), 836–851. https://doi.org/10.1034/j.1600-0854.2000.011104.x Aridor, M., & Hannan, L. A. (2002). Traffic Jams II: An Update of Diseases of Intracellular Transport. Traffic, 3(11), 781–790. https://doi.org/10.1034/j.1600-0854.2002.31103.x Bassik, M. C., Kampmann, M., Lebbink, R. J., Wang, S., Hein, M. Y., Poser, I., Weibezahn, J., Horlbeck, M. A., Chen, S., Mann, M., Hyman, A. A., Leproust, E. M., McManus, M. T., & Weissman, J. S. (2013). A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell, 152(4), 909–922. https://doi.org/10.1016/j.cell.2013.01.030 Béthune, J., & Wieland, F. T. (2018). Assembly of COPI and COPII Vesicular Coat Proteins on Membranes. Annual Review of Biophysics, 47, 63–83. https://doi.org/10.1146/annurev- biophys-070317-033259 Bögershausen, N., Shahrzad, N., Chong, J. X., von Kleist-Retzow, J.-C., Stanga, D., Li, Y., Bernier, F. P., Loucks, C. M., Wirth, R., Puffenberger, E. G., Hegele, R. A., Schreml, J., Lapointe, G., Keupp, K., Brett, C. L., Anderson, R., Hahn, A., Innes, A. M., Suchowersky, O., … Lamont, R. E. (2013). Recessive TRAPPC11 Mutations Cause a Disease Spectrum of Limb Girdle Muscular Dystrophy and Myopathy with Movement Disorder and Intellectual Disability. American Journal of Human Genetics, 93(1), 181–190. https://doi.org/10.1016/j.ajhg.2013.05.028 Boland, B., Kumar, A., Lee, S., Platt, F. M., Wegiel, J., Yu, W. H., & Nixon, R. A. (2008). Autophagy Induction and Autophagosome Clearance in Neurons: Relationship to Autophagic Pathology in Alzheimer’s Disease. The Journal of Neuroscience, 28(27), 6926–6937. https://doi.org/10.1523/JNEUROSCI.0800-08.2008 Boncompain, G., Divoux, S., Gareil, N., de Forges, H., Lescure, A., Latreche, L., Mercanti, V., Jollivet, F., Raposo, G., & Perez, F. (2012). Synchronization of secretory protein traffic in populations of cells. Nature Methods, 9(5), 493–498. https://doi.org/10.1038/nmeth.1928 Bröcker, C., Engelbrecht-Vandré, S., & Ungermann, C. (2010). Multisubunit Tethering Complexes and Their Role in Membrane Fusion. Current Biology, 20(21), R943–R952. https://doi.org/10.1016/j.cub.2010.09.015 Cai, Y., Chin, H. F., Lazarova, D., Menon, S., Fu, C., Cai, H., Sclafani, A., Rodgers, D. W., De La Cruz, E. M., Ferro-Novick, S., & Reinisch, K. M. (2008). The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell, 133(7), 1202– 1213. https://doi.org/10.1016/j.cell.2008.04.049 DeRossi, C., Vacaru, A., Rafiq, R., Cinaroglu, A., Imrie, D., Nayar, S., Baryshnikova, A., Milev, M. P., Stanga, D., Kadakia, D., Gao, N., Chu, J., Freeze, H. H., Lehrman, M. A., Sacher, M., & Sadler, K. C. (2016). Trappc11 is required for protein glycosylation in zebrafish and humans. Molecular Biology of the Cell, 27(8), 1220–1234. https://doi.org/10.1091/mbc.E15-08-0557 Duarte, D. T., Hul, S., & Sacher, M. (2011). A yeast two hybrid screen identifies SPATA4 as a TRAPP interactor. FEBS Letters, 585(17), 2676–2681. https://doi.org/10.1016/j.febslet.2011.07.040 Gedeon, A. K., Colley, A., Jamieson, R., Thompson, E. M., Rogers, J., Sillence, D., Tiller, G. E., Mulley, J. C., & Gécz, J. (1999). Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nature Genetics, 22(4), 400–404. https://doi.org/10.1038/11976 Harripaul, R., Vasli, N., Mikhailov, A., Rafiq, M. A., Mittal, K., Windpassinger, C., Sheikh, T. I., Noor, A., Mahmood, H., Downey, S., Johnson, M., Vleuten, K., Bell, L., Ilyas, M., Khan, F. S., Khan, V., Moradi, M., Ayaz, M., Naeem, F., … Vincent, J. B. (2018). Mapping autosomal recessive intellectual disability: Combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Molecular Psychiatry, 23(4), 973–984. https://doi.org/10.1038/mp.2017.60 Horton, A. C., Rácz, B., Monson, E. E., Lin, A. L., Weinberg, R. J., & Ehlers, M. D. (2005). Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron, 48(5), 757–771. https://doi.org/10.1016/j.neuron.2005.11.005 Hu, W.-H., Pendergast, J. S., Mo, X.-M., Brambilla, R., Bracchi-Ricard, V., Li, F., Walters, W. M., Blits, B., He, L., Schaal, S. M., & Bethea, J. R. (2005). NIBP, a novel NIK and IKK(beta)- binding protein that enhances NF-(kappa)B activation. The Journal of Biological Chemistry, 280(32), 29233–29241. https://doi.org/10.1074/jbc.M501670200 Jareb, M., & Banker, G. (1997). Inhibition of Axonal Growth by Brefeldin A in Hippocampal Neurons in Culture. Journal of Neuroscience, 17(23), 8955–8963. https://doi.org/10.1523/JNEUROSCI.17-23-08955.1997 Jepson, J. E. C., Praschberger, R., & Krishnakumar, S. S. (2019). Mechanisms of Neurological Dysfunction in GOSR2 Progressive Myoclonus Epilepsy, a Golgi SNAREopathy. Neuroscience. https://doi.org/10.1016/j.neuroscience.2019.03.057 Jones, S., Newman, C., Liu, F., & Segev, N. (2000). The TRAPP Complex Is a Nucleotide Exchanger for Ypt1 and Ypt31/32. Molecular Biology of the Cell, 11(12), 4403–4411. Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., Brand, H., Solomonson, M., Watts, N. A., Rhodes, D., Singer-Berk, M., England, E. M., Seaby, E. G., Kosmicki, J. A., … MacArthur, D. G. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581(7809), 434–443. https://doi.org/10.1038/s41586-020-2308-7 Khattak, N. A., & Mir, A. (2014). Computational analysis of TRAPPC9: Candidate gene for autosomal recessive non-syndromic mental retardation. CNS & Neurological Disorders Drug Targets, 13(4), 699–711. Kim, J. J., Lipatova, Z., & Segev, N. (2016). TRAPP Complexes in Secretion and Autophagy. Frontiers in Cell and Developmental Biology, 4. https://doi.org/10.3389/fcell.2016.00020 Kim, M.-S., Yi, M.-J., Lee, K.-H., Wagner, J., Munger, C., Kim, Y.-G., Whiteway, M., Cygler, M., Oh, B.-H., & Sacher, M. (2005). Biochemical and crystallographic studies reveal a specific interaction between TRAPP subunits Trs33p and Bet3p. Traffic (Copenhagen, Denmark), 6(12), 1183–1195. https://doi.org/10.1111/j.1600-0854.2005.00352.x Kim, Y.-G., Raunser, S., Munger, C., Wagner, J., Song, Y.-L., Cygler, M., Walz, T., Oh, B.-H., & Sacher, M. (2006). The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. Cell, 127(4), 817–830. https://doi.org/10.1016/j.cell.2006.09.029 Kümmel, D., Müller, J. J., Roske, Y., Henke, N., & Heinemann, U. (2006). Structure of the Bet3- Tpc6B core of TRAPP: Two Tpc6 paralogs form trimeric complexes with Bet3 and Mum2. Journal of Molecular Biology, 361(1), 22–32. https://doi.org/10.1016/j.jmb.2006.06.012 m, l. (1991). Guide to yeast genetics and molecular biology. Methods in Enzymology, 194, 1–863. Marin-Valencia, I., Novarino, G., Johansen, A., Rosti, B., Issa, M. Y., Musaev, D., Bhat, G., Scott, E., Silhavy, J. L., Stanley, V., Rosti, R. O., Gleeson, J. W., Imam, F. B., Zaki, M. S., & Gleeson, J. G. (2018). A homozygous founder mutation in TRAPPC6B associates with a neurodevelopmental disorder characterised by microcephaly, epilepsy and autistic features. Journal of Medical Genetics, 55(1), 48–54. https://doi.org/10.1136/jmedgenet- 2017-104627 Milev, M. P., Graziano, C., Karall, D., Kuper, W. F. E., Al-Deri, N., Cordelli, D. M., Haack, T. B., Danhauser, K., Iuso, A., Palombo, F., Pippucci, T., Prokisch, H., Saint-Dic, D., Seri, M., Stanga, D., Cenacchi, G., van Gassen, K. L. I., Zschocke, J., Fauth, C., … van Hasselt, P. M. (2018). Bi-allelic mutations in TRAPPC2L result in a neurodevelopmental disorder and have an impact on RAB11 in fibroblasts. Journal of Medical Genetics, 55(11), 753–764. https://doi.org/10.1136/jmedgenet-2018-105441 Milev, M. P., Grout, M. E., Saint-Dic, D., Cheng, Y.-H. H., Glass, I. A., Hale, C. J., Hanna, D. S., Dorschner, M. O., Prematilake, K., Shaag, A., Elpeleg, O., Sacher, M., Doherty, D., & Edvardson, S. (2017). Mutations in TRAPPC12 Manifest in Progressive Childhood Encephalopathy and Golgi Dysfunction. American Journal of Human Genetics, 101(2), 291–299. https://doi.org/10.1016/j.ajhg.2017.07.006 Mir, A., Kaufman, L., Noor, A., Motazacker, M. M., Jamil, T., Azam, M., Kahrizi, K., Rafiq, M. A., Weksberg, R., Nasr, T., Naeem, F., Tzschach, A., Kuss, A. W., Ishak, G. E., Doherty, D., Ropers, H. H., Barkovich, A. J., Najmabadi, H., Ayub, M., & Vincent, J. B. (2009). Identification of Mutations in TRAPPC9, which Encodes the NIK- and IKK-β-Binding Protein, in Nonsyndromic Autosomal-Recessive Mental Retardation. American Journal of Human Genetics, 85(6), 909–915. https://doi.org/10.1016/j.ajhg.2009.11.009 Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., & Ohsumi, Y. (2004). In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Molecular Biology of the Cell, 15(3), 1101–1111. https://doi.org/10.1091/mbc.e03-09-0704 Mochida, G. H., Mahajnah, M., Hill, A. D., Basel-Vanagaite, L., Gleason, D., Hill, R. S., Bodell, A., Crosier, M., Straussberg, R., & Walsh, C. A. (2009). A Truncating Mutation of TRAPPC9 Is Associated with Autosomal-Recessive Intellectual Disability and Postnatal Microcephaly. American Journal of Human Genetics, 85(6), 897–902. https://doi.org/10.1016/j.ajhg.2009.10.027 Mohamoud, H. S., Ahmed, S., Jelani, M., Alrayes, N., Childs, K., Vadgama, N., Almramhi, M. M., Al-Aama, J. Y., Goodbourn, S., & Nasir, J. (2018). A missense mutation in TRAPPC6A leads to build-up of the protein, in patients with a neurodevelopmental syndrome and dysmorphic features. Scientific Reports, 8(1), 2053. https://doi.org/10.1038/s41598- 018-20658-w Montpetit, B., & Conibear, E. (2009). Identification of the novel TRAPP associated protein Tca17. Traffic (Copenhagen, Denmark), 10(6), 713–723. https://doi.org/10.1111/j.1600- 0854.2009.00895.x Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C., & Durbin, R. (2016). BCFtools/RoH: A hidden Markov model approach for detecting autozygosity from next- generation sequencing data. Bioinformatics (Oxford, England), 32(11), 1749–1751. https://doi.org/10.1093/bioinformatics/btw044 Okur, V., LeDuc, C. A., Guzman, E., Valivullah, Z. M., Anyane-Yeboa, K., & Chung, W. K. (2019). Homozygous noncanonical splice variant in LSM1 in two siblings with multiple congenital anomalies and global developmental delay. Cold Spring Harbor Molecular Case Studies, 5(3). https://doi.org/10.1101/mcs.a004101 Pfenninger, K. H. (2009). Plasma membrane expansion: A neuron’s Herculean task. Nature Reviews. Neuroscience, 10(4), 251–261. https://doi.org/10.1038/nrn2593 Pfenninger, K. H., & Johnson, M. P. (1983). Membrane biogenesis in the sprouting neuron. I. Selective transfer of newly synthesized phospholipid into the growing neurite. The Journal of Cell Biology, 97(4), 1038–1042. https://doi.org/10.1083/jcb.97.4.1038 Poplin, R., Chang, P.-C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J., Nguyen, N., Afshar, P. T., Gross, S. S., Dorfman, L., McLean, C. Y., & DePristo, M. A. (2018). A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 36(10), 983–987. https://doi.org/10.1038/nbt.4235 Riedel, F., Galindo, A., Muschalik, N., & Munro, S. (2018). The two TRAPP complexes of metazoans have distinct roles and act on different Rab GTPases. The Journal of Cell Biology, 217(2), 601–617. https://doi.org/10.1083/jcb.201705068 Sacher, M., Barrowman, J., Wang, W., Horecka, J., Zhang, Y., Pypaert, M., & Ferro-Novick, S. (2001). TRAPP I implicated in the specificity of tethering in ER-to Golgi transport. Molecular Cell, 7(2), 433–442. Sacher, M., Shahrzad, N., Kamel, H., & Milev, M. P. (2019). TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins. Traffic (Copenhagen, Denmark), 20(1), 5–26. https://doi.org/10.1111/tra.12615 Scrivens, P. J., Noueihed, B., Shahrzad, N., Hul, S., Brunet, S., & Sacher, M. (2011). C4orf41 and TTC-15 are mammalian TRAPP components with a role at an early stage in ER-to-Golgi trafficking. Molecular Biology of the Cell, 22(12), 2083–2093. https://doi.org/10.1091/mbc.E10-11-0873 Scrivens, P. J., Shahrzad, N., Moores, A., Morin, A., Brunet, S., & Sacher, M. (2009). TRAPPC2L is a novel, highly conserved TRAPP-interacting protein. Traffic (Copenhagen, Denmark), 10(6), 724–736. https://doi.org/10.1111/j.1600-0854.2009.00906.x Stanga, D., Zhao, Q., Milev, M. P., Saint-Dic, D., Jimenez-Mallebrera, C., & Sacher, M. (2019). TRAPPC11 functions in autophagy by recruiting ATG2B-WIPI4/WDR45 to preautophagosomal membranes. Traffic (Copenhagen, Denmark), 20(5), 325–345. https://doi.org/10.1111/tra.12640 Thapar, A., Cooper, M., & Rutter, M. (2017). Neurodevelopmental disorders. The Lancet Psychiatry, 4(4), 339–346. https://doi.org/10.1016/S2215-0366(16)30376-5 Thomas, L. L., & Fromme, J. C. (2016). GTPase cross talk regulates TRAPPII activation of Rab11 homologues during vesicle biogenesis. The Journal of Cell Biology, 215(4), 499–513. https://doi.org/10.1083/jcb.201608123 Thomas, L. L., Joiner, A. M. N., & Fromme, J. C. (2018). The TRAPPIII complex activates the GTPase Ypt1 (Rab1) in the secretory pathway. The Journal of Cell Biology, 217(1), 283– 298. https://doi.org/10.1083/jcb.201705214 Todde, V., Veenhuis, M., & van der Klei, I. J. (2009). Autophagy: Principles and significance in health and disease. Biochimica Et Biophysica Acta, 1792(1), 3–13. https://doi.org/10.1016/j.bbadis.2008.10.016 Wang, B., Stanford, K. R., & Kundu, M. (2020). ER-to-Golgi Trafficking and Its Implication in Neurological Diseases. Cells, 9(2), 408. https://doi.org/10.3390/cells9020408 Wang, C., Gohlke, U., Roske, Y., & Heinemann, U. (2014). Crystal structure of the yeast TRAPP- associated protein Tca17. The FEBS Journal, 281(18), 4195–4206. https://doi.org/10.1111/febs.12888 Ye, B., Zhang, Y., Song, W., Younger, S. H., Jan, L. Y., & Jan, Y. N. (2007). Growing dendrites and axons differ in their reliance on the secretory pathway. Cell, 130(4), 717–729. https://doi.org/10.1016/j.cell.2007.06.032 Zong, M., Wu, X., Chan, C. W. L., Choi, M. Y., Chan, H. C., Tanner, J. A., & Yu, S. (2011). The Adaptor Function of TRAPPC2 in Mammalian TRAPPs Explains TRAPPC2- Associated SEDT and TRAPPC9-Associated Congenital Intellectual Disability. PLoS ONE, 6(8). https://doi.org/10.1371/journal.pone.0023350