Abbas, Z., Sweet, A., Hernandez, G., & Arvanitogiannis, A. (2017). Adolescent Exposure to Methylphenidate Increases Impulsive Choice Later in Life. Frontiers in Behavioral Neuroscience, 11, 214. https://doi.org/10.3389/fnbeh.2017.00214 Adriani, W., Canese, R., Podo, F., & Laviola, G. (2007). 1H MRS-detectable metabolic brain changes and reduced impulsive behavior in adult rats exposed to methylphenidate during adolescence. Neurotoxicology and Teratology, 29(1), 116–125. https://doi.org/10.1016/j.ntt.2006.11.010 Ainslie, G. (1975). Specious reward: A behavioral theory of impulsiveness and impulse control. Psychological Bulletin, 82(4), 463–496. https://doi.org/10.1037/h0076860 Ainslie, G. (1992). Picoeconomics: The strategic interaction of successive motivational states within the person (pp. xvi, 440). Cambridge University Press. Ainslie, G., & Herrnstein, R. J. (1981). Preference reversal and delayed reinforcement. Animal Learning & Behavior, 9(4), 476–482. https://doi.org/10.3758/BF03209777 Alsop, B., & Davison, M. (1986). Preference for multiple versus mixed schedules of reinforcement. Journal of the Experimental Analysis of Behavior, 45(1), 33–45. https://doi.org/10.1901/jeab.1986.45-33 Andersen, S. L., Arvanitogiannis, A., Pliakas, A. M., LeBlanc, C., & Carlezon, W. A. (2002). Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nature Neuroscience, 5(1), 13–14. https://doi.org/10.1038/nn777 Arvanitogiannis, A., & Shizgal, P. (2008). The reinforcement mountain: Allocation of behavior as a function of the rate and intensity of rewarding brain stimulation. Behavioral Neuroscience, 122(5), 1126–1138. https://doi.org/10.1037/a0012679 Baum, W. M. (1979). Matching, undermatching, and overmatching in studies of choice. Journal of the Experimental Analysis of Behavior, 32(2), 269–281. https://doi.org/10.1901/jeab.1979.32-269 Baum, W. M., & Rachlin, H. C. (1969). Choice as time allocation. Journal of the Experimental Analysis of Behavior, 12(6), 861–874. https://doi.org/10.1901/jeab.1969.12-861 Bavarian, N., Flay, B. R., Ketcham, P. L., & Smit, E. (2015). The Illicit Use of Prescription Stimulants on College Campuses: A Theory-Guided Systematic Review. Health Education & Behavior, 42(6), 719–729. https://doi.org/10.1177/1090198115580576 Benes, F. M., Vincent, S. L., Molloy, R., & Khan, Y. (1996). Increased interaction of dopamine-immunoreactive varicosities with GABA neurons of rat medial prefrontal cortex occurs during the postweanling period. Synapse, 23(4), 237–245. https://doi.org/10.1002/(SICI)1098-2396(199608)23:4<237::AID-SYN1>3.0.CO;2-8 Berg, M. E., & Grace, R. C. (2004). Independence of terminal-link entry rate and immediacy in concurrent chains. Journal of the Experimental Analysis of Behavior, 82(3), 235–251. https://doi.org/10.1901/jeab.2004.82-235 BGM channel. (2015, April 9). Howard Rachlin, “Matching” SQAB. https://www.youtube.com/watch?v=1DtoEv7iLws Bolaños, C. A., Barrot, M., Berton, O., Wallace-Black, D., & Nestler, E. J. (2003). Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biological Psychiatry, 54(12), 1317–1329. https://doi.org/10.1016/S0006-3223(03)00570-5 Borrero, C. S. W., Vollmer, T. R., Borrero, J. C., Bourret, J. C., Sloman, K. N., Samaha, A. L., & Dallery, J. (2010). Concurrent Reinforcement Schedules for Problem Behavior and Appropriate Behavior: Experimental Applications of the Matching Law. Journal of the Experimental Analysis of Behavior, 93(3), 455–469. https://doi.org/10.1901/jeab.2010.93-455 Brandon, C. L., Marinelli, M., & White, F. J. (2003). Adolescent exposure to methylphenidate alters the activity of rat midbrain dopamine neurons. Biological Psychiatry, 54(12), 1338–1344. https://doi.org/10.1016/S0006-3223(03)00787-X Breton, Y.-A. (2013). Molar and Molecular Models of Performance for Rewarding Brain Stimulation [Phd, Concordia University]. https://spectrum.library.concordia.ca/977979/ Breton, Y.-A., Conover, K., & Shizgal, P. (2014). The effect of probability discounting on reward seeking: A three-dimensional perspective. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00284 Breton, Y.-A., Marcus, J. C., & Shizgal, P. (2009). Rattus Psychologicus: Construction of preferences by self-stimulating rats. Behavioural Brain Research, 202(1), 77–91. Breton, Y.-A., Mullett, A., Conover, K., & Shizgal, P. (2013). Validation and extension of the reward-mountain model. Frontiers in Behavioral Neuroscience, 7. https://doi.org/10.3389/fnbeh.2013.00125 Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755–765. https://doi.org/10.1038/nrn1764 Buonomano, D. V. (2017). Your brain is a time machine: The neuroscience of physics and time (First). W.W. Norton & Company, Inc. Burgos, H., Cofré, C., Hernández, A., Sáez-Briones, P., Agurto, R., Castillo, A., Morales, B., & Zeise, M. L. (2015). Methylphenidate has long-lasting metaplastic effects in the prefrontal cortex of adolescent rats. Behavioural Brain Research, 291, 112–117. https://doi.org/10.1016/j.bbr.2015.05.009 Carlezon, W. A., Mague, S. D., & Andersen, S. L. (2003). Enduring behavioral effects of early exposure to methylphenidate in rats. Biological Psychiatry, 54(12), 1330–1337. https://doi.org/10.1016/j.biopsych.2003.08.020 Catania, A. C. (1963). Concurrent performances: A baseline for the study of reinforcement magnitude. Journal of the Experimental Analysis of Behavior, 6(2), 299–300. https://doi.org/10.1901/jeab.1963.6-299 Cheng, J., Xiong, Z., Duffney, L. J., Wei, J., Liu, A., Liu, S., Chen, G.-J., & Yan, Z. (2014). Methylphenidate Exerts Dose-Dependent Effects on Glutamate Receptors and Behaviors. Biological Psychiatry, 76(12), 953–962. https://doi.org/10.1016/j.biopsych.2014.04.003 Chung, S.-H., & Herrnstein, R. J. (1967). Choice and delay of reinforcement. Journal of the Experimental Analysis of Behavior, 10(1), 67–74. https://doi.org/10.1901/jeab.1967.10-67 Church, R. M. (1984a). Properties of the internal clock. Annals of the New York Academy of Sciences, 423, 566–582. https://doi.org/10.1111/j.1749-6632.1984.tb23459.x Church, R. M. (1984b). Properties of the internal clock. Annals of the New York Academy of Sciences, 423, 566–582. https://doi.org/10.1111/j.1749-6632.1984.tb23459.x Church, R. M. (1997). Chapter 2 Timing and temporal search. In C. M. Bradshaw & E. Szabadi (Eds.), Advances in Psychology (Vol. 120, pp. 41–78). North-Holland. https://doi.org/10.1016/S0166-4115(97)80054-4 Church, R. M. (2002). A tribute to John Gibbon. Behavioural Processes, 57(2–3), 261–274. https://doi.org/10.1016/s0376-6357(02)00018-9 Church, R. M. (2003). A concise introduction to scalar timing theory. In Functional and neural mechanisms of interval timing (pp. 3–22). CRC Press/Routledge/Taylor & Francis Group. https://doi.org/10.1201/9780203009574.sec1 Conover, K. L., & Shizgal, P. (19941001a). Competition and summation between rewarding effects of sucrose and lateral hypothalamic stimulation in the rat. Behavioral Neuroscience, 108(3), 537. https://doi.org/10.1037/0735-7044.108.3.537 Conover, K. L., & Shizgal, P. (19941001b). Differential effects of postingestive feedback on the reward value of sucrose and lateral hypothalamic stimulation in rats. Behavioral Neuroscience, 108(3), 559. https://doi.org/10.1037/0735-7044.108.3.559 Conover, K. L., Woodside, B., & Shizgal, P. (1994). Effects of sodium depletion on competition and summation between rewarding effects of salt and lateral hypothalamic stimulation in the rat. Behavioral Neuroscience, 108(3), 549–558. https://doi.org/10.1037//0735-7044.108.3.549 Constantinople, C. M., Piet, A. T., & Brody, C. D. (2019). An Analysis of Decision under Risk in Rats. Current Biology, 29(12), 2066-2074.e5. https://doi.org/10.1016/j.cub.2019.05.013 Cordes, S., & Gallistel, C. R. (2008). Intact Interval Timing in Circadian CLOCK Mutants. Brain Research, 1227, 120–127. https://doi.org/10.1016/j.brainres.2008.06.043 Critchfield, T. S., & Kollins, S. H. (2001). Temporal discounting: Basic research and the analysis of socially important behavior. Journal of Applied Behavior Analysis, 34(1), 101–122. https://doi.org/10.1901/jaba.2001.34-101 Crowley, N. A., Cody, P. A., Davis, M. I., Lovinger, D. M., & Mateo, Y. (2014). Chronic methylphenidate exposure during adolescence reduces striatal synaptic responses to ethanol. European Journal of Neuroscience, 39(4), 548–556. https://doi.org/10.1111/ejn.12426 Davison, M. (1983). Bias and sensitivity to reinforcement in a concurrent-chain schedule. Journal of the Experimental Analysis of Behavior, 40(1), 15–34. https://doi.org/10.1901/jeab.1983.40-15 Davison, M. (1988). Concurrent schedules: Interaction of reinforcer frequency and reinforcer duration. Journal of the Experimental Analysis of Behavior, 49(3), 339–349. https://doi.org/10.1901/jeab.1988.49-339 Davison, M. C. (1976). Preference for fixed-interval schedules: Effects of unequal initial links. Journal of the Experimental Analysis of Behavior, 25(3), 371–376. https://doi.org/10.1901/jeab.1976.25-371 Davison, M., & Hogsden, I. (1984). Concurrent variable-interval schedule performance: Fixed versus mixed reinforcer durations. Journal of the Experimental Analysis of Behavior, 41(2), 169–182. https://doi.org/10.1901/jeab.1984.41-169 Davison, M., & McCarthy, D. (2016). The Matching Law: A Research Review. Routledge. Devilbiss, D. M., & Berridge, C. W. (2008). Cognition-Enhancing Doses of Methylphenidate Preferentially Increase Prefrontal Cortex Neuronal Responsiveness. Biological Psychiatry, 64(7), 626–635. https://doi.org/10.1016/j.biopsych.2008.04.037 Diesmann, M., Gewaltig, M.-O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402(6761), 529–533. https://doi.org/10.1038/990101 Durstewitz, D. (2004). Neural representation of interval time. NeuroReport, 15(5), 745–749. Elliffe, D., Davison, M., & Landon, J. (2008). Relative Reinforcer Rates and Magnitudes Do Not Control Concurrent Choice Independently. Journal of the Experimental Analysis of Behavior, 90(2), 169–185. https://doi.org/10.1901/jeab.2008.90-169 Epstein, R. (1981). Amount consumed as a function of magazine-cycle duration. Behaviour Analysis Letters, 1(1), 63–66. Estle, S. J., Green, L., Myerson, J., & Holt, D. D. (2006). Differential effects of amount on temporal and probability discounting of gains and losses. Memory & Cognition, 34(4), 914–928. https://doi.org/10.3758/BF03193437 Evenden, J. L., & Ryan, C. N. (1996). The pharmacology of impulsive behaviour in rats: The effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology, 128(2), 161–170. https://doi.org/10.1007/s002130050121 Fouriezos, G., & Randall, D. (1997). The cost of delaying rewarding brain stimulation. Behavioural Brain Research, 87(1), 111–113. https://doi.org/10.1016/s0166-4328(97)02280-8 Frank, R. A., & Stutz, R. M. (1984). Self-deprivation: A review. Psychological Bulletin, 96(2), 384–393. https://doi.org/10.1037/0033-2909.96.2.384 Gallistel, C. R. (1978). Self-stimulation in the rat: Quantitative characteristics of the reward pathway. Journal of Comparative and Physiological Psychology, 92(6), 977. https://doi.org/10.1037/h0077513 Gallistel, C. R., & King, A. P. (2009). Memory and the computational brain: Why cognitive science will transform neuroscience (pp. xvi, 319). Wiley-Blackwell. https://doi.org/10.1002/9781444310498 Gallistel, C. R., & Leon, M. (1991). Measuring the subjective magnitude of brain stimulation reward by titration with rate of reward. Behavioral Neuroscience, 105(6), 913–925. Gallistel, C. R., Shizgal, P., & Yeomans, J. S. (1981). A portrait of the substrate for self-stimulation. Psychological Review, 88(3), 228–273. https://doi.org/10.1037/0033-295X.88.3.228 Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychological Review, 84(3), 279–325. https://doi.org/10.1037/0033-295X.84.3.279 Gibbon, J., Fairhurst, S., & Goldberg, B. (1997). Chapter 8 Cooperation, conflict and compromise between circadian and interval clocks in pigeons. In C. M. Bradshaw & E. Szabadi (Eds.), Advances in Psychology (Vol. 120, pp. 329–384). North-Holland. https://doi.org/10.1016/S0166-4115(97)80060-X Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., & Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2(10), 861–863. https://doi.org/10.1038/13158 Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent, T. F., Herman, D. H., Clasen, L. S., Toga, A. W., Rapoport, J. L., & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101(21), 8174–8179. Grace, R. (1999). The Matching Law And Amount-dependent Exponential Discounting As Accounts Of Self-control Choice. Journal of the Experimental Analysis of Behavior, 71(1), 27–44. https://doi.org/10.1901/jeab.1999.71-27 Grace, R. C. (1995). Independence of reinforcement delay and magnitude in concurrent chains. Journal of the Experimental Analysis of Behavior, 63(3), 255–276. https://doi.org/10.1901/jeab.1995.63-255 Grace, R. C., Bedell, M. A., & Nevin, J. A. (2002). Preference and resistance to change with constant- and variable-duration terminal links: Independence of reinforcement rate and magnitude. Journal of the Experimental Analysis of Behavior, 77(3), 233–255. https://doi.org/10.1901/jeab.2002.77-233 Green, L., Myerson, J., Holt, D. D., Slevin, J. R., & Estle, S. J. (2004). Discounting of Delayed Food Rewards in Pigeons and Rats: Is There a Magnitude Effect? Journal of the Experimental Analysis of Behavior, 81(1), 39–50. https://doi.org/10.1901/jeab.2004.81-39 Green, L., Myerson, J., & McFadden, E. (1997). Rate of temporal discounting decreases with amount of reward. Memory & Cognition, 25, 715–723. https://doi.org/10.3758/BF03211314 Green, L., & Snyderman, M. (1980). Choice between rewards differing in amount and delay: Toward a choice model of self control. Journal of the Experimental Analysis of Behavior, 34(2), 135–147. https://doi.org/10.1901/jeab.1980.34-135 Grossberg, S., & Schmajuk, N. A. (1989). Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Networks, 2(2), 79–102. https://doi.org/10.1016/0893-6080(89)90026-9 Hahnloser, R. H. R., Kozhevnikov, A. A., & Fee, M. S. (2002). An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature, 419(6902), 65–70. https://doi.org/10.1038/nature00974 Harper, D. G. C. (1982). Competitive foraging in mallards: “Ideal free’ ducks. Animal Behaviour, 30(2), 575–584. https://doi.org/10.1016/S0003-3472(82)80071-7 Hernandez, G., Breton, Y.-A., Conover, K., & Shizgal, P. (2010). At What Stage of Neural Processing Does Cocaine Act to Boost Pursuit of Rewards? PLOS ONE, 5(11), e15081. https://doi.org/10.1371/journal.pone.0015081 Hernandez, G., Oleson, E. B., Gentry, R. N., Abbas, Z., Bernstein, D. L., Arvanitogiannis, A., & Cheer, J. F. (2014). Endocannabinoids Promote Cocaine-Induced Impulsivity and Its Rapid Dopaminergic Correlates. Biological Psychiatry, 75(6), 487–498. https://doi.org/10.1016/j.biopsych.2013.09.005 Hernandez, G., Trujillo-Pisanty, I., Cossette, M.-P., Conover, K., & Shizgal, P. (2012). Role of Dopamine Tone in the Pursuit of Brain Stimulation Reward. The Journal of Neuroscience, 32(32), 11032–11041. https://doi.org/10.1523/JNEUROSCI.1051-12.2012 Herrnstein, R. J. (1961). Relative and Absolute Strength of Response as a Function of Frequency of Reinforcement1,2. Journal of the Experimental Analysis of Behavior, 4(3), 267–272. https://doi.org/10.1901/jeab.1961.4-267 Herrnstein, R. J., & Loveland, D. H. (1975). Maximizing and matching on concurrent ratio schedules. Journal of the Experimental Analysis of Behavior, 24(1), 107–116. https://doi.org/10.1901/jeab.1975.24-107 Herzog, E. D., Aton, S. J., Numano, R., Sakaki, Y., & Tei, H. (2004). Temporal precision in the mammalian circadian system: A reliable clock from less reliable neurons. Journal of Biological Rhythms, 19(1), 35–46. https://doi.org/10.1177/0748730403260776 Higa, J. J., & Staddon, J. E. R. (1997). Chapter 1 Dynamic models of rapid temporal control in animals. In C. M. Bradshaw & E. Szabadi (Eds.), Advances in Psychology (Vol. 120, pp. 1–40). North-Holland. https://doi.org/10.1016/S0166-4115(97)80053-2 Ito, M., & Asaki, K. (1982). Choice behavior of rats in a concurrent-chains schedule: Amount and delay of reinforcement. Journal of the Experimental Analysis of Behavior, 37(3), 383–392. https://doi.org/10.1901/jeab.1982.37-383 Ivry, R. B., & Schlerf, J. E. (2008). Dedicated and intrinsic models of time perception. Trends in Cognitive Sciences, 12(7), 273–280. https://doi.org/10.1016/j.tics.2008.04.002 Johansson, F., Jirenhed, D.-A., Rasmussen, A., Zucca, R., & Hesslow, G. (2014). Memory trace and timing mechanism localized to cerebellar Purkinje cells. Proceedings of the National Academy of Sciences, 111(41), 14930–14934. https://doi.org/10.1073/pnas.1415371111 Johnson, H. A., Goel, A., & Buonomano, D. V. (2010). Neural dynamics of in vitro cortical networks reflects experienced temporal patterns. Nature Neuroscience, 13(8), 917–919. https://doi.org/10.1038/nn.2579 Karmarkar, U. R., & Buonomano, D. V. (2007). Telling time in the absence of clocks. Neuron, 53(3), 427–438. https://doi.org/10.1016/j.neuron.2007.01.006 Keller, J. V., & Gollub, L. R. (1977). Duration and rate of reinforcement as determinants of concurrent responding. Journal of the Experimental Analysis of Behavior, 28(2), 145–153. https://doi.org/10.1901/jeab.1977.28-145 Kheramin, S., Body, S., Ho, M.-Y., Velázquez-Martinez, D. N., Bradshaw, C. M., Szabadi, E., Deakin, J. F. W., & Anderson, I. M. (2004). Effects of orbital prefrontal cortex dopamine depletion on inter-temporal choice: A quantitative analysis. Psychopharmacology, 175(2), 206–214. https://doi.org/10.1007/s00213-004-1813-y Killeen, P. R. (1985). Incentive theory: IV. Magnitude of reward. Journal of the Experimental Analysis of Behavior, 43(3), 407–417. https://doi.org/10.1901/jeab.1985.43-407 Kitano, K., Okamoto, H., & Fukai, T. (2003). Time representing cortical activities: Two models inspired by prefrontal persistent activity. Biological Cybernetics, 88(5), 387–394. https://doi.org/10.1007/s00422-002-0390-6 Koob, G. F., & Moal, M. L. (1997). Drug Abuse: Hedonic Homeostatic Dysregulation. Science, 278(5335), 52–58. https://doi.org/10.1126/science.278.5335.52 Kreitzman, L., & Foster, R. (2010). Seasons of Life: The biological rhythms that enable living things to thrive and survive. Profile Books. Leo, D., Adriani, W., Cavaliere, C., Cirillo, G., Marco, E. M., Romano, E., Porzio, U. D., Papa, M., Perrone-Capano, C., & Laviola, G. (2009). Methylphenidate to adolescent rats drives enduring changes of accumbal Htr7 expression: Implications for impulsive behavior and neuronal morphology. Genes, Brain and Behavior, 8(3), 356–368. https://doi.org/10.1111/j.1601-183X.2009.00486.x Leon, M., & Gallistel, C. R. (1992). The function relating the subjective magnitude of brain stimulation reward to stimulation strength varies with site of stimulation. Behavioural Brain Research, 52(2), 183–193. https://doi.org/10.1016/s0166-4328(05)80229-3 Leon, M. I., & Gallistel, C. R. (1998). Self-stimulating rats combine subjective reward magnitude and subjective reward rate multiplicatively. Journal of Experimental Psychology. Animal Behavior Processes, 24(3), 265–277. https://doi.org/10.1037//0097-7403.24.3.265 Lewis, P. A., & Miall, R. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13(2), 250–255. https://doi.org/10.1016/S0959-4388(03)00036-9 Lewis, P. A., Miall, R. C., Daan, S., & Kacelnik, A. (2003). Interval timing in mice does not rely upon the circadian pacemaker. Neuroscience Letters, 348(3), 131–134. https://doi.org/10.1016/s0304-3940(03)00521-4 Logue, A. W., & Chavarro, A. (1987). Effect on choice of absolute and relative values of reinforcer delay, amount, and frequency. Journal of Experimental Psychology: Animal Behavior Processes, 13(3), 280–291. https://doi.org/10.1037/0097-7403.13.3.280 Logue, A. W., Tobin, H., Chelonis, J. J., Wang, R. Y., Geary, N., & Schachter, S. (1992). Cocaine decreases self-control in rats: A preliminary report. Psychopharmacology, 109(1), 245–247. https://doi.org/10.1007/BF02245509 Long, M. A., & Fee, M. S. (2008). Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature, 456(7219), 189–194. https://doi.org/10.1038/nature07448 Low, K. G., & Gendaszek, A. E. (2002). Illicit use of psychostimulants among college students: A preliminary study. Psychology, Health & Medicine, 7(3), 283–287. https://doi.org/10.1080/13548500220139386 Macar, F., Lejeune, H., Bonnet, M., Ferrara, A., Pouthas, V., Vidal, F., & Maquet, P. (2002). Activation of the supplementary motor area and of attentional networks during temporal processing. Experimental Brain Research, 142(4), 475–485. https://doi.org/10.1007/s00221-001-0953-0 Manitt, C., Mimee, A., Eng, C., Pokinko, M., Stroh, T., Cooper, H. M., Kolb, B., & Flores, C. (2011). The Netrin Receptor DCC Is Required in the Pubertal Organization of Mesocortical Dopamine Circuitry. Journal of Neuroscience, 31(23), 8381–8394. Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Brain Research. Cognitive Brain Research, 21(2), 139–170. https://doi.org/10.1016/j.cogbrainres.2004.06.012 Mazur, J. E. (1987). An adjusting procedure for studying delayed reinforcement. In The effect of delay and of intervening events on reinforcement value (pp. 55–73). Lawrence Erlbaum Associates, Inc. Mazur, J. E., Stellar, J. R., & Waraczynski, M. (1987). Self-control choice with electrical stimulation of the brain as a reinforcer. Behavioural Processes, 15(2–3), 143–153. https://doi.org/10.1016/0376-6357(87)90003-9 McDowell, J. J. (2005). On The Classic And Modern Theories Of Matching. Journal of the Experimental Analysis of Behavior, 84(1), 111–127. https://doi.org/10.1901/jeab.2005.59-04 McLean, A. P., & Blampied, N. M. (2001). Sensitivity to relative reinforcer rate in concurrent schedules: Independence from relative and absolute reinforcer duration. Journal of the Experimental Analysis of Behavior, 75(1), 25–42. https://doi.org/10.1901/jeab.2001.75-25 Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M., & Mauk, M. D. (2000). Timing mechanisms in the cerebellum: Testing predictions of a large-scale computer simulation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(14), 5516–5525. Michon, J. A. (1985). The Compleat Time Experiencer. In J. A. Michon & J. L. Jackson (Eds.), Time, Mind, and Behavior (pp. 20–52). Springer. https://doi.org/10.1007/978-3-642-70491-8_2 Moll, G. H., Hause, S., Rüther, E., Rothenberger, A., & Huether, G. (2001). Early Methylphenidate Administration to Young Rats Causes a Persistent Reduction in the Density of Striatal Dopamine Transporters. Journal of Child and Adolescent Psychopharmacology, 11(1), 15–24. https://doi.org/10.1089/104454601750143366 Moore, J. W. (Ed.). (2002). A Neuroscientist’s Guide to Classical Conditioning. Springer-Verlag. https://doi.org/10.1007/978-1-4419-8558-3 Naneix, F., Marchand, A. R., Di Scala, G., Pape, J.-R., & Coutureau, E. (2012). Parallel Maturation of Goal-Directed Behavior and Dopaminergic Systems during Adolescence. Journal of Neuroscience, 32(46), 16223–16232. Navarick, D. J., & Fantino, E. (1976). Self-control and general models of choice. Journal of Experimental Psychology: Animal Behavior Processes, 2(1), 75–87. https://doi.org/10.1037/0097-7403.2.1.75 Neuringer, A. J. (1967). Effects of reinforcement magnitude on choice and rate of responding. Journal of the Experimental Analysis of Behavior, 10(5), 417–424. https://doi.org/10.1901/jeab.1967.10-417 Nieuwenhuys, R., Geeraedts, L. M. G., & Veening, J. G. (1982). The medial forebrain bundle of the rat. I. General introduction. Journal of Comparative Neurology, 206(1), 49–81. https://doi.org/10.1002/cne.902060106 Odum, A. L., & Baumann, A. A. L. (2010). Delay discounting: State and trait variable. In Impulsivity: The behavioral and neurological science of discounting (pp. 39–65). American Psychological Association. https://doi.org/10.1037/12069-002 Olds, J. (20060327). Satiation effects in self-stimulation of the brain. Journal of Comparative and Physiological Psychology, 51(6), 675. https://doi.org/10.1037/h0039616 Ong, E. L., & White, K. G. (2004). Amount-dependent temporal discounting? Behavioural Processes, 66(3), 201–212. https://doi.org/10.1016/j.beproc.2004.03.005 Paine, T. A., Dringenberg, H. C., & Olmstead, M. C. (2003). Effects of chronic cocaine on impulsivity: Relation to cortical serotonin mechanisms. Behavioural Brain Research, 147(1–2), 135–147. https://doi.org/10.1016/s0166-4328(03)00156-6 Papachristos, E. B., Jacobs, E. H., & Elgersma, Y. (2011). Interval timing is intact in arrhythmic Cry1/Cry2-deficient mice. Journal of Biological Rhythms, 26(4), 305–313. https://doi.org/10.1177/0748730411410026 Pardey, M. C., Kumar, N. N., Goodchild, A. K., Clemens, K. J., Homewood, J., & Cornish, J. L. (2012). Long-Term Effects of Chronic Oral Ritalin Administration on Cognitive and Neural Development in Adolescent Wistar Kyoto Rats. Brain Sciences, 2(3), 375–404. https://doi.org/10.3390/brainsci2030375 Patke, A., Young, M. W., & Axelrod, S. (2020). Molecular mechanisms and physiological importance of circadian rhythms. Nature Reviews Molecular Cell Biology, 21(2), 67–84. https://doi.org/10.1038/s41580-019-0179-2 Pietras, C. J., Cherek, D. R., Lane, S. D., Tcheremissine, O. V., & Steinberg, J. L. (2003). Effects of methylphenidate on impulsive choice in adult humans. Psychopharmacology, 170(4), 390–398. https://doi.org/10.1007/s00213-003-1547-2 Pine, A., Shiner, T., Seymour, B., & Dolan, R. J. (2010). Dopamine, Time, and Impulsivity in Humans. Journal of Neuroscience, 30(26), 8888–8896. Pitts, R. C., & McKinney, A. P. (2005). Effects of methylphenidate and morphine on delay-discount functions obtained within sessions. Journal of the Experimental Analysis of Behavior, 83(3), 297–314. https://doi.org/10.1901/jeab.2005.47-04 Plaud, J. J. (1992). The prediction and control of behavior revisited: A review of the matching law. Journal of Behavior Therapy and Experimental Psychiatry, 23(1), 25–31. https://doi.org/10.1016/0005-7916(92)90021-A Rachlin, H. (2006). Notes on Discounting. Journal of the Experimental Analysis of Behavior, 85(3), 425–435. https://doi.org/10.1901/jeab.2006.85-05 Rachlin, H., & Baum, W. M. (1972). Effects of Alternative Reinforcement: Does the Source Matter?1. Journal of the Experimental Analysis of Behavior, 18(2), 231–241. https://doi.org/10.1901/jeab.1972.18-231 Rachlin, H., & Green, L. (1972). Commitment, Choice and Self-Control1. Journal of the Experimental Analysis of Behavior, 17(1), 15–22. https://doi.org/10.1901/jeab.1972.17-15 Raible, F., Takekata, H., & Tessmar-Raible, K. (2017). An Overview of Monthly Rhythms and Clocks. Frontiers in Neurology, 8. https://doi.org/10.3389/fneur.2017.00189 Raineri, A., & Rachlin, H. (1993). The effect of temporal constraints on the value of money and other commodities. Journal of Behavioral Decision Making, 6(2), 77–94. https://doi.org/10.1002/bdm.3960060202 Rammsayer, T. H. (1999). Neuropharmacological evidence for different timing mechanisms in humans. The Quarterly Journal of Experimental Psychology. B, Comparative and Physiological Psychology, 52(3), 273–286. https://doi.org/10.1080/713932708 Rammsayer, T. H., & Lima, S. D. (1991). Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors. Perception & Psychophysics, 50(6), 565–574. https://doi.org/10.3758/bf03207541 Reed, D. D., & Kaplan, B. A. (2011). The Matching Law: A Tutorial for Practitioners. Behavior Analysis in Practice, 4(2), 15–24. https://doi.org/10.1007/BF03391780 Reppert, S. M., & Weaver, D. R. (2002). Coordination of circadian timing in mammals. Nature, 418(6901), 935–941. https://doi.org/10.1038/nature00965 Reynolds, L. M., Makowski, C. S., Yogendran, S. V., Kiessling, S., Cermakian, N., & Flores, C. (2015). Amphetamine in Adolescence Disrupts the Development of Medial Prefrontal Cortex Dopamine Connectivity in a dcc -Dependent Manner. Neuropsychopharmacology, 40(5), 1101–1112. https://doi.org/10.1038/npp.2014.287 Richards, J. B., Mitchell, S. H., de Wit, H., & Seiden, L. S. (1997). Determination of discount functions in rats with an adjusting-amount procedure. Journal of the Experimental Analysis of Behavior, 67(3), 353–366. https://doi.org/10.1901/jeab.1997.67-353 Rider, D. P. (1983). Choice for aperiodic versus periodic ratio schedules: A comparison of concurrent and concurrent-chain procedures. Journal of the Experimental Analysis of Behavior, 40(3), 225–237. https://doi.org/10.1901/jeab.1983.40-225 Rodriguez, M. L., & Logue, A. W. (1986). Independence of the amount and delay ratios in the generalized matching law. Animal Learning & Behavior, 14(1), 29–37. https://doi.org/10.3758/BF03200034 Schibler, U., & Sassone-Corsi, P. (2002). A web of circadian pacemakers. Cell, 111(7), 919–922. https://doi.org/10.1016/s0092-8674(02)01225-4 Shiels, K., Hawk, L. W., Reynolds, B., Mazzullo, R., Rhodes, J., Pelham, W. E., Waxmonsky, J. G., & Gangloff, B. P. (2009). The Effects of Methylphenidate on Discounting of Delayed Rewards in ADHD. Experimental and Clinical Psychopharmacology, 17(5), 291–301. https://doi.org/10.1037/a0017259 Shizgal, P. (1997). Neural basis of utility estimation. Current Opinion in Neurobiology, 7(2), 198–208. https://doi.org/10.1016/S0959-4388(97)80008-6 Shuler, M. G., & Bear, M. F. (2006). Reward Timing in the Primary Visual Cortex. Science, 311(5767), 1606–1609. https://doi.org/10.1126/science.1123513 Shull, R. L., & Pliskoff, S. S. (1967). Changeover delay and concurrent schedules: Some effects on relative performance measures. Journal of the Experimental Analysis of Behavior, 10(6), 517–527. https://doi.org/10.1901/jeab.1967.10-517 Simmons, J. M., & Gallistel, C. R. (1994). Saturation of subjective reward magnitude as a function of current and pulse frequency. Behavioral Neuroscience, 108(1), 151–160. https://doi.org/10.1037//0735-7044.108.1.151 Simon, N. W., Mendez, I. A., & Setlow, B. (2007). Cocaine exposure causes long-term increases in impulsive choice. Behavioral Neuroscience, 121(3), 543–549. https://doi.org/10.1037/0735-7044.121.3.543 Snyderman, M. (1983). Delay and amount of reward in a concurrent chain. Journal of the Experimental Analysis of Behavior, 39(3), 437–447. https://doi.org/10.1901/jeab.1983.39-437 Solomon, R. B., Trujillo-Pisanty, I., Conover, K., & Shizgal, P. (2015). Psychophysical inference of frequency-following fidelity in the neural substrate for brain stimulation reward. Behavioural Brain Research, 292, 327–341. https://doi.org/10.1016/j.bbr.2015.06.008 Somkuwar, S. S., Jordan, C. J., Kantak, K. M., & Dwoskin, L. P. (2013). Adolescent Atomoxetine Treatment in a Rodent Model of ADHD: Effects on Cocaine Self-Administration and Dopamine Transporters in Frontostriatal Regions. Neuropsychopharmacology, 38(13), 2588–2597. https://doi.org/10.1038/npp.2013.163 Sonnenschein, B., Conover, K., & Shizgal, P. (2003). Growth of brain stimulation reward as a function of duration and stimulation strength. Behavioral Neuroscience, 117(5), 978–994. https://doi.org/10.1037/0735-7044.117.5.978 Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24(4), 417–463. https://doi.org/10.1016/S0149-7634(00)00014-2 Squires, N., & Fantino, E. (1971). A model for choice in simple concurrent and concurrent-chains schedules. Journal of the Experimental Analysis of Behavior, 15(1), 27–38. https://doi.org/10.1901/jeab.1971.15-27 Staddon, J. E., & Higa, J. J. (1999). Time and memory: Towards a pacemaker-free theory of interval timing. Journal of the Experimental Analysis of Behavior, 71(2), 215–251. https://doi.org/10.1901/jeab.1999.71-215 Thornquist, S. C., Langer, K., Zhang, S. X., Rogulja, D., & Crickmore, M. A. (2020). CaMKII Measures the Passage of Time to Coordinate Behavior and Motivational State. Neuron, 105(2), 334-345.e9. https://doi.org/10.1016/j.neuron.2019.10.018 Thornquist, S. C., Pitsch, M. J., Auth, C. S., & Crickmore, M. A. (2021). Biochemical evidence accumulates across neurons to drive a network-level eruption. Molecular Cell, 81(4), 675-690.e8. https://doi.org/10.1016/j.molcel.2020.12.029 Tieu, K. H., Keidel, A. L., McGann, J. P., Faulkner, B., & Brown, T. H. (1999). Perirhinal-amygdala circuit-level computational model of temporal encoding in fear conditioning. Psychobiology, 27(1), 1–25. https://doi.org/10.3758/BF03332095 Todorov, J. C. (1973). Interaction of frequency and magnitude of reinforcement on concurrent performances. Journal of the Experimental Analysis of Behavior, 19(3), 451–458. https://doi.org/10.1901/jeab.1973.19-451 Trujillo-Pisanty, I., Conover, K., & Shizgal, P. (2013). A new view of the effect of dopamine receptor antagonism on operant performance for rewarding brain stimulation in the rat. Psychopharmacology. https://doi.org/10.1007/s00213-013-3328-x Trujillo-Pisanty, I., Conover, K., Solis, P., Palacios, D., & Shizgal, P. (2020). Dopamine neurons do not constitute an obligatory stage in the final common path for the evaluation and pursuit of brain stimulation reward. PloS One, 15(6), e0226722. https://doi.org/10.1371/journal.pone.0226722 Trujillo-Pisanty, I., Hernandez, G., Moreau-Debord, I., Cossette, M.-P., Conover, K., Cheer, J. F., & Shizgal, P. (2011). Cannabinoid receptor blockade reduces the opportunity cost at which rats maintain operant performance for rewarding brain stimulation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(14), 5426–5435. https://doi.org/10.1523/JNEUROSCI.0079-11.2011 Urban, K. R., & Gao, W.-J. (2015). Evolution of the Study of Methylphenidate and Its Actions on the Adult Versus Juvenile Brain. Journal of Attention Disorders, 19(7), 603–619. https://doi.org/10.1177/1087054712455504 van der Marel, K., Klomp, A., Meerhoff, G. F., Schipper, P., Lucassen, P. J., Homberg, J. R., Dijkhuizen, R. M., & Reneman, L. (2014). Long-Term Oral Methylphenidate Treatment in Adolescent and Adult Rats: Differential Effects on Brain Morphology and Function. Neuropsychopharmacology, 39(2), 263–273. https://doi.org/10.1038/npp.2013.169 van Gaalen, M. M., van Koten, R., Schoffelmeer, A. N. M., & Vanderschuren, L. J. M. J. (2006). Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biological Psychiatry, 60(1), 66–73. https://doi.org/10.1016/j.biopsych.2005.06.005 van Rijn, H., Gu, B.-M., & Meck, W. H. (2014). Dedicated clock/timing-circuit theories of time perception and timed performance. Advances in Experimental Medicine and Biology, 829, 75–99. https://doi.org/10.1007/978-1-4939-1782-2_5 Vanderveldt, A., Oliveira, L., & Green, L. (2016). Delay Discounting: Pigeon, Rat, Human – Does it Matter? Journal of Experimental Psychology. Animal Learning and Cognition, 42(2), 141–162. https://doi.org/10.1037/xan0000097 Vendruscolo, L. F., Izídio, G. S., Takahashi, R. N., & Ramos, A. (2008). Chronic methylphenidate treatment during adolescence increases anxiety-related behaviors and ethanol drinking in adult spontaneously hypertensive rats. Behavioural Pharmacology, 19(1), 21–27. https://doi.org/10.1097/FBP.0b013e3282f3cfbe Ward, R. D., Gallistel, C. R., & Balsam, P. D. (2013). It’s The Information! Behavioural Processes, 95, 3–7. https://doi.org/10.1016/j.beproc.2013.01.005 Welsh, D. K., Engel, E. M., Richardson, G. S., Dement, W. C., & Engle, E. M. (1986). Precision of circadian wake and activity onset timing in the mouse. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 158(6), 827–834. https://doi.org/10.1007/BF01324824 White, K. G., & Pipe, M.-E. (1987). Sensitivity to reinforcer duration in a self-control procedure. Journal of the Experimental Analysis of Behavior, 48(2), 235–249. https://doi.org/10.1901/jeab.1987.48-235 Winstanley, C. (2010). The neural and neurochemical basis of delay discounting. In Madden, G.J & Bickel, W.K., Impulsivity: The behavioral and neurological science of discounting (pp. 95–121). American Psychological Association. https://content.apa.org/record/2009-18177-004 Wit, H., & Mitchell, S. (2010). Drug effects on delay discounting. Impulsivity: The Behavioral and Neurological Science of Discounting, 213–241. https://doi.org/10.1037/12069-008 Yamazaki, T., & Tanaka, S. (2005). Neural modeling of an internal clock. Neural Computation, 17(5), 1032–1058. https://doi.org/10.1162/0899766053491850 Zeeb, F. D., Floresco, S. B., & Winstanley, C. A. (2010). Contributions of the orbitofrontal cortex to impulsive choice: Interactions with basal levels of impulsivity, dopamine signalling, and reward-related cues. Psychopharmacology, 211(1), 87–98. https://doi.org/10.1007/s00213-010-1871-2 Zosel, A., Bartelson, B. B., Bailey, E., Lowenstein, S., & Dart, R. (2013). Characterization of adolescent prescription drug abuse and misuse using the Researched Abuse Diversion and Addiction-related Surveillance (RADARS(®)) System. Journal of the American Academy of Child and Adolescent Psychiatry, 52(2), 196-204.e2. https://doi.org/10.1016/j.jaac.2012.11.014