[1] S. d’Habitation du Québec, Société D ’ Habitation Le Logement Au Nunavik Document D ’ Information. . [2] Société d’Habitation du Québec, “Housing Construction in Nunavik,” 2017. [3] C. Yan, D. Rousse, and M. Glaus, “Multi-criteria decision analysis ranking alternative heating systems for remote communities in Nunavik,” J. Clean. Prod., vol. 208, pp. 1488–1497, 2019. [4] Gouvernement du Québec - Ministère des Transports du Québec, Transportation Plan of Norf-du-Québec. Analysis. 2008. [5] Gouvernement de Quebec, The 2030 Energy Policy. 2016. [6] H. R. Hooshangi, “Feasibility study of wind-diesel hybrid power system for remote communities in north of Quebec,” J. Adv. Clean Energy, vol. 1, no. 1, pp. 84–95, 2014. [7] P. K. V. Penrod E B, “Design of a Flat-Plate Collector for a Solar-Earth Heat Pump[J]. Solar Energy, 1962, 6(1): 9-22.,” 1962. [8] K. Karanasios and P. Parker, “Recent Developments in Renewable Energy in Remote Aboriginal Communities, Quebec, Canada,” Pap. Can. Econ. Dev., vol. 16, no. 0, pp. 98–108, 2016. [9] Green, “https://greenbuildingcanada.ca/2018/solar-panels-diesel-replacement-nunavik/,” Energy Convers. Manag., vol. 50, no. 3, pp. 822–828, 2017. [10] R. M. Dincer I, “Thermal energy storage: systems and applications. second ed. Hoboken, N.J: Wiley,” Geothermics, vol. 37, no. 4, pp. 347–355, 2011. [11] L. Mesquita, D. McClenahan, J. Thornton, J. Carriere, and B. Wong, “Drake Landing solar community: 10 years of operation,” ISES Sol. World Congr. 2017 - IEA SHC Int. Conf. Sol. Heat. Cool. Build. Ind. 2017, Proc., pp. 333–344, 2017. [12] N. Giordano, I. Kanzari, M. M. Miranda, C. Dezayes, and J. Raymond, “Underground thermal energy storage in subarctic climates: a feasibility study conducted in Kuujjuaq (QC, Canada),” no. November, pp. 1–10, 2018. [13] J. B. Guinee et al., “Handbook on Life Cycle Assessment, Operational guide to the ISO standards Volume 1, 2a, 2b and 3,” J. Clean. Prod., vol. 6, no. 5, pp. 311–313, 2001. [14] L. Gao, J. Zhao, and Z. Tang, “A Review on Borehole Seasonal Solar Thermal Energy Storage,” Energy Procedia, vol. 70, pp. 209–218, 2015. [15] M. N. Fisch, M. Guigas, and J. O. Dalenbäck, “A REVIEW OF LARGE-SCALE SOLAR HEATING SYSTEMS IN EUROPE,” Sol. Energy, vol. 63, no. 6, pp. 355–366, Dec. 1998. [16] T. Schmidt, D. Mangold, and H. Müller-Steinhagen, “Central solar heating plants with seasonal storage in Germany,” Sol. Energy, vol. 76, no. 1–3, pp. 165–174, 2004. [17] J. E. Nielsen et al., HEATSTORE Underground Thermal Energy Storage (UTES) – state-of-the-art, example cases and lessons learned, vol. D1.2. 2019. [18] M. Lundh and J. O. Dalenbäck, “Swedish solar heated residential area with seasonal storage in rock: Initial evaluation,” Renew. Energy, vol. 33, no. 4, pp. 703–711, Apr. 2008. [19] D. * Mangold, T. Schmidt, and V. Lottner, “Seasonal Thermal Energy Storage in Germany.” [20] “Seasonal storage – a German success story | Sun & Wind Energy.” [Online]. Available: https://www.sunwindenergy.com/inhalt/seasonal-storage-german-success-story. [Accessed: 04-Oct-2021]. [21] V. Stevens, C. Craven, and B. Grunau, “Thermal Storage Technology Assessment An introductory assessment of thermal storage in residential cold climate construction,” 2013. [22] “BOREHOLES IN BRAEDSTRUP,” 2013. [23] M. Malmberg, “Transient modeling of a high temperature borehole thermal energy storage coupled with a combined heat and power plant.” [24] N. Giordano, I. Kanzari, M. M. Miranda, C. Dezayes, and J. Raymond, “Shallow geothermal resource assessments for the northern community of Kuujjuaq, Québec, Canada,” IGCP636 Annu. Meet., no. November, pp. 1–4, 2017. [25] J. M. Lemieux et al., “Groundwater occurrence in cold environments: examples from Nunavik, Canada,” Hydrogeol. J., vol. 24, no. 6, pp. 1497–1513, 2016. [26] M. M. Miranda, C. Dezayes, N. Giordano, I. Kanzari, J. Raymond, and J. Carvalho, “Fracture Network Characterization as input for Geothermal Energy Research : Preliminary data from Kuujjuaq , Northern Québec , Canada,” 43rd Work. Geotherm. Reserv. Eng. Stanford Univ., no. 43rd, pp. 1–12, 2018. [27] E. Gunawan, N. Giordano, P. Jensson, J. Newson, and J. Raymond, “Alternative heating systems for northern remote communities: Techno-economic analysis of ground-coupled heat pumps in Kuujjuaq, Nunavik, Canada,” Renew. Energy, vol. 147, pp. 1540–1553, 2020. [28] A. L. Reed, A. P. Novelli, K. L. Doran, S. Ge, N. Lu, and J. S. McCartney, “Solar district heating with underground thermal energy storage: Pathways to commercial viability in North America,” Renew. Energy, vol. 126, pp. 1–13, 2018. [29] B. Welsch, L. Göllner-Völker, D. O. Schulte, K. Bär, I. Sass, and L. Schebek, “Environmental and economic assessment of borehole thermal energy storage in district heating systems,” Appl. Energy, vol. 216, no. January, pp. 73–90, 2018. [30] R. Renaldi and D. Friedrich, “Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK,” Appl. Energy, vol. 236, pp. 388–400, Feb. 2019. [31] N. Giordano and J. Raymond, “Alternative and sustainable heat production for drinking water needs in a subarctic climate (Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities,” Appl. Energy, vol. 252, no. May, p. 113463, 2019. [32] A. de Laborderie et al., “Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment,” Proc. World Renew. Energy Congr. – Sweden, 8–13 May, 2011, Linköping, Sweden, vol. 57, pp. 3678–3685, 2011. [33] P. A. F. Foivi-Zoi Morsink-Georgali, Angeliki Kylili, “Life Cycle Assessment of Flat Plate Solar Thermal Collectors,” J. Sustain. Archit. Civ. Eng., vol. 21, no. 4, pp. 41–49, 2018. [34] M. Milousi, M. Souliotis, G. Arampatzis, and S. Papaefthimiou, “Evaluating the environmental performance of solar energy systems through a combined life cycle assessment and cost analysis,” Sustain., vol. 11, no. 9, 2019. [35] A. Rubino, “Life Cycle Assessment of Underground Thermal Energy Storage Systems,” 2013. [36] E. Oró, A. Gil, A. de Gracia, D. Boer, and L. F. Cabeza, “Comparative life cycle assessment of thermal energy storage systems for solar power plants,” Renew. Energy, vol. 44, pp. 166–173, 2012. [37] R. G. Raluy, L. M. Serra, M. Guadalfajara, and M. A. Lozano, “Life cycle assessment of central solar heating plants with seasonal storage,” Energy Procedia, vol. 48, pp. 966–976, 2014. [38] C. M. M. Andrea Aquino1,*, Emanuele Bonamente1, 2, Sara Rinaldi1, Andrea Nicolini1, 2 and 1, “Life cycle assessment of a ground-source heat pump including an upstream thermal storage,” no. January 2017, pp. 1–14, 2017. [39] H. Karasu and I. Dincer, “Life cycle assessment of integrated thermal energy storage systems in buildings: A case study in Canada,” Energy Build., vol. 217, p. 109940, 2020. [40] N. Catolico, S. Ge, and J. S. McCartney, “Numerical Modeling of a Soil-Borehole Thermal Energy Storage System,” Vadose Zo. J., vol. 15, no. 1, p. vzj2015.05.0078, 2016. [41] M. Finkbeiner, A. Inaba, R. Tan, K. Christiansen, and H.-J. Klüppel, “The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044,” Int. J. Life Cycle Assess. 2006 112, vol. 11, no. 2, pp. 80–85, Jan. 2006. [42] “ISO 14040:2006(en), Environmental management — Life cycle assessment — Principles and framework.” [Online]. Available: https://www.iso.org/obp/ui#iso:std:iso:14040:ed-2:v1:en. [Accessed: 21-Aug-2021]. [43] “Impact Categories (LCA) - All You Need To Know - Ecochain.” [Online]. Available: https://ecochain.com/knowledge/impact-categories-lca/. [Accessed: 22-Aug-2021]. [44] M. Goedkoop, M. Oele, J. Leijting, T. Ponsioen, and E. Meijer, “Introduction to LCA with SimaPro Colophon,” Introd. to LCA with SimaPro, no. November, 2016. [45] M. Goedkoop and R. Spriensma, “The Eco-indicator 99 - A damage oriented method for Life Cycle Impact Assessment,” Assessment, no. January 2001, p. 144, 2001. [46] O. Jolliet et al., “IMPACT 2002+: A New Life Cycle Impact Assessment Methodology,” Int. J. Life Cycle Assess., vol. 8, no. 6, pp. 324–330, 2003. [47] “Cumulative Energy Demand As Predictor for the Environmental Burden of Commodity Production.” [48] sevaldsn, “Climate Change 2001: Synthesis Report.” [49] A. Dahash, F. Ochs, M. B. Janetti, and W. Streicher, “Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems,” 2019. [50] S. K. Shah, L. Aye, and B. Rismanchi, “Seasonal thermal energy storage system for cold climate zones: A review of recent developments,” Renew. Sustain. Energy Rev., vol. 97, no. July, pp. 38–49, 2018. [51] L. Mesquita, D. Mcclenahan, J. Thornton, J. Carriere, and B. Wong, “Drake Landing Solar Community: 10 Years of Operation,” 2017. [52] B. Sibbitt, D. Mcclenahan, R. Djebbar, J. Thornton, and B. Wong, “The performance of a High Solar Fraction Seasonal Storage District Heating System- Five Years Of Operarion.pdf,” vol. 00, no. 2011, 2012. [53] “Best Practice Manual in Manufacturing the Main Components of Solar Water Thermal Systems,” Glob. Environ. Facil., 2020. [54] M. Stucki et al., “Update of the Life Cycle Inventories of Solar Collectors,” p. 25, 2012. [55] Lowara, “Lowara ® 1300 Series : Pure performance,” 2016. [56] “30 square meter 316L HEAT EXCHANGER #236122 For Sale.” [Online]. Available: http://www.ippe.com/Process-Equipment/Subcategory0/HEAT EXCHANGER/StockDetails/236122. [Accessed: 29-Jul-2021]. [57] R. Brogan, “SHELL AND TUBE HEAT EXCHANGERS,” A-to-Z Guid. to Thermodyn. Heat Mass Transf. Fluids Eng. [58] M. Adolfsson and S. Rashid, “Life Cycle Assessment and Life Cycle Cost of Heat Exchangers A Case for Inter Terminals Sweden AB Located in Port of Gothenburg,” pp. 1–52, 2016. [59] “656 MODEL PLATE HEAT EXCHANGER.” [Online]. Available: https://www.ekinendustriyel.com/mit-products/plate-heat-exchanger/656-model-plate-heat-exchanger/. [Accessed: 31-Jul-2021]. [60] R. K. and J. N. Werner F., Althaus H.-J., Künniger T., “Life Cycle Inventories of Wood as Fuel and Construction Material. ecoinvent report No. 9, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH, retrieved from: www.ecoinvent.org.,” 2007. [Online]. Available: https://www.ecoinvent.org/database/older-versions/ecoinvent-version-2/reports-on-ecoinvent-2/reports-on-ecoinvent-2.html. [Accessed: 01-Aug-2021]. [61] “Photovoltaic potential and solar resource maps of Canada.” [Online]. Available: https://www.nrcan.gc.ca/our-natural-resources/energy-sources-distribution/renewable-energy/solar-photovoltaic-energy/tools-solar-photovoltaic-energy/photovoltaic-potential-and-solar-resource-maps-canada/18366. [Accessed: 01-Oct-2021].