[1] S. Talebian, G. G. Wallace, A. Schroeder, F. Stellacci, and J. Conde, “Nanotechnology-based disinfectants and sensors for SARS-CoV-2,” Nat. Nanotechnol., vol. 15, no. 8, pp. 618–621, 2020, doi: 10.1038/s41565-020-0751-0. [2] X. Gan, H. Zhao, R. Schirhagl, and X. Quan, “Two-dimensional nanomaterial based sensors for heavy metal ions,” Microchimica Acta, vol. 185, no. 10. Springer-Verlag Wien, pp. 1–30, Oct. 01, 2018, doi: 10.1007/s00604-018-3005-1. [3] C. Zhu, D. Du, and Y. Lin, “Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications,” Biosensors and Bioelectronics, vol. 89. Elsevier Ltd, pp. 43–55, Mar. 15, 2017, doi: 10.1016/j.bios.2016.06.045. [4] S. Mao et al., “Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing,” Chemical Society Reviews, vol. 46, no. 22. Royal Society of Chemistry, pp. 6872–6904, Nov. 21, 2017, doi: 10.1039/c6cs00827e. [5] A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, “Buckled two-dimensional Xene sheets,” Nature Materials, vol. 16, no. 2. Nature Publishing Group, pp. 163–169, Feb. 01, 2017, doi: 10.1038/nmat4802. [6] P. Singh, D. K. K. Randhawa, Tarun, B. C. Choudhary, G. K. Walia, and N. Kaur, “First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors,” J. Mol. Model., vol. 26, no. 1, Jan. 2020, doi: 10.1007/s00894-019-4243-9. [7] T. Tarun, D. K. K. Randhawa, P. Singh, B. C. Choudhary, G. K. Walia, and N. Kaur, “Analysis of uric acid adsorption on armchair silicene nanoribbons: a DFT study,” J. Mol. Model., vol. 26, no. 3, Mar. 2020, doi: 10.1007/s00894-020-4313-z. [8] T. Tarun, P. Singh, H. Kaur, G. K. Walia, D. K. K. Randhawa, and B. C. Choudhary, “Defective GaAs nanoribbon–based biosensor for lung cancer biomarkers: a DFT study,” J. Mol. Model. 2021 279, vol. 27, no. 9, pp. 1–13, Aug. 2021, doi: 10.1007/S00894-021-04889-9. [9] L. J. Carter et al., “Assay Techniques and Test Development for COVID-19 Diagnosis,” ACS Cent. Sci., vol. 6, no. 5, pp. 591–605, May 2020, doi: 10.1021/acscentsci.0c00501. [10] A. Bolotsky et al., “Two-Dimensional Materials in Biosensing and Healthcare: From in Vitro Diagnostics to Optogenetics and beyond,” ACS Nano, vol. 13, no. 9, pp. 9781–9810, May 2019, doi: 10.1021/acsnano.9b03632. [11] R. Vargas-Bernal, “Graphene against Other Two‐Dimensional Materials: A Comparative Study on the Basis of Electronic Applications,” in Two-dimensional Materials - Synthesis, Characterization and Potential Applications, InTech, 2016. [12] E. W. Hill, A. Vijayaragahvan, and K. Novoselov, “Graphene sensors,” IEEE Sens. J., vol. 11, no. 12, pp. 3161–3170, 2011, doi: 10.1109/JSEN.2011.2167608. [13] A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics, vol. 6, no. 11, pp. 749–758, 2012, doi: 10.1038/nphoton.2012.262. [14] K. Nomura and A. H. MacDonald, “Quantum transport of massless dirac fermions,” Phys. Rev. Lett., vol. 98, no. 7, pp. 1–4, 2007, doi: 10.1103/PhysRevLett.98.076602. [15] Y. Kanai et al., “Graphene Field Effect Transistor-Based Immunosensor for Ultrasensitive Noncompetitive Detection of Small Antigens,” ACS Sensors, vol. 5, no. 1, pp. 24–28, 2020, doi: 10.1021/acssensors.9b02137. [16] A. Salehi-Khojin et al., “Graphene Sensors: Polycrystalline Graphene Ribbons as Chemiresistors (Adv. Mater. 1/2012),” Adv. Mater., vol. 24, no. 1, pp. 52–52, 2012, doi: 10.1002/adma.201190200. [17] A. Soltani et al., “Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor,” Light Sci. Appl., vol. 9, no. 1, 2020, doi: 10.1038/s41377-020-0321-0. [18] M. Salehirozveh, P. Dehghani, M. Zimmermann, V. A. L. Roy, and H. Heidari, “Graphene Field Effect Transistor Biosensors based on Aptamer for Amyloid-β Detection,” IEEE Sens. J., vol. 20, no. 21, pp. 1–1, 2020, doi: 10.1109/jsen.2020.3000583. [19] I. Fakih et al., “Selective ion sensing with high resolution large area graphene field effect transistor arrays,” Nat. Commun., vol. 11, no. 1, pp. 1–12, 2020, doi: 10.1038/s41467-020-16979-y. [20] F. De Nicola et al., “Graphene Plasmonic Fractal Metamaterials for Broadband Photodetectors,” Sci. Rep., vol. 10, no. 1, pp. 1–10, 2020, doi: 10.1038/s41598-020-63099-0. [21] F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol., vol. 4, no. 12, pp. 839–843, 2009, doi: 10.1038/nnano.2009.292. [22] J. Guo et al., “High-performance silicon−graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm,” Light Sci. Appl., vol. 9, no. 1, 2020, doi: 10.1038/s41377-020-0263-6. [23] V. Mišeikis et al., “Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides,” ACS Nano, vol. 14, no. 9, pp. 11190–11204, 2020, doi: 10.1021/acsnano.0c02738. [24] L. Zhuo et al., “A broadband all-fiber integrated graphene photodetector with CNT-enhanced responsivity,” Nanoscale, vol. 12, no. 26, pp. 14188–14193, 2020, doi: 10.1039/d0nr00139b. [25] J. Gosciniak, M. Rasras, and J. B. Khurgin, “Ultrafast Plasmonic Graphene Photodetector Based on the Channel Photothermoelectric Effect,” ACS Photonics, vol. 7, no. 2, pp. 488–498, 2020, doi: 10.1021/acsphotonics.9b01585. [26] G. Konstantatos et al., “Hybrid grapheneĝquantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol., vol. 7, no. 6, pp. 363–368, 2012, doi: 10.1038/nnano.2012.60. [27] R. Pan et al., “Excellent performance in vertical graphene-C60-graphene heterojunction phototransistors with a tunable bi-directionality,” Carbon N. Y., vol. 162, pp. 375–381, 2020, doi: 10.1016/j.carbon.2020.02.030. [28] J. Han et al., “Light-modulated vertical heterojunction phototransistors with distinct logical photocurrents,” Light Sci. Appl., vol. 9, no. 1, 2020, doi: 10.1038/s41377-020-00406-4. [29] Z. Sun et al., “Graphene mode-locked ultrafast laser,” ACS Nano, vol. 4, no. 2, pp. 803–810, 2010, doi: 10.1021/nn901703e. [30] G. Yang, L. Li, and M. C. Ng, “Science and Technology of Advanced Materials Structure of graphene and its disorders: a review Structure of graphene and its disorders: a review,” 2018, doi: 10.1080/14686996.2018.1494493. [31] M. I. Katsnelson, “The electronic structure of ideal graphene,” in The Physics of Graphene, Cambridge University Press, 2020, pp. 1–23. [32] M. I. Katsnelson, “Graphene: carbon in two dimensions,” Materials Today, vol. 10, no. 1–2. Elsevier, pp. 20–27, Jan. 01, 2007, doi: 10.1016/S1369-7021(06)71788-6. [33] H. Raza and E. C. Kan, “Armchair graphene nanoribbons: Electronic structure and electric-field modulation,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 24, pp. 1–5, 2008, doi: 10.1103/PhysRevB.77.245434. [34] V. P. Gusynin, V. A. Miransky, S. G. Sharapov, and I. A. Shovkovy, “Edge states, mass and spin gaps, and quantum Hall effect in graphene,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 20, May 2008, doi: 10.1103/PhysRevB.77.205409. [35] M. Zoghi, A. Y. Goharrizi, and M. Saremi, “Band Gap Tuning of Armchair Graphene Nanoribbons by Using Antidotes,” J. Electron. Mater., vol. 46, no. 1, pp. 340–346, 2017, doi: 10.1007/s11664-016-4940-4. [36] Y. W. Son, M. L. Cohen, and S. G. Louie, “Energy gaps in graphene nanoribbons,” Phys. Rev. Lett., vol. 97, no. 21, pp. 1–4, 2006, doi: 10.1103/PhysRevLett.97.216803. [37] G. Wang, “Effect of edge-hydrogen passivation and saturation on the carrier mobility of armchair graphene nanoribbons,” Chem. Phys. Lett., vol. 533, pp. 74–77, Apr. 2012, doi: 10.1016/j.cplett.2012.03.029. [38] K. K. Jha, N. Tyagi, N. K. Jaiswal, and P. Srivastava, “Structural and electronic properties of armchair graphene nanoribbons functionalized with fluorine,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 383, no. 32, p. 125949, Nov. 2019, doi: 10.1016/j.physleta.2019.125949. [39] C. Patel, R. Yogi, and N. K. Jaiswal, “First-principles study for I-V characteristics of halogen functionalized zigzag graphene nanoribbons,” in AIP Conference Proceedings, Jul. 2019, vol. 2115, no. 1, p. 030451, doi: 10.1063/1.5113290. [40] A. Kumar et al., “Nitrogen-terminated semiconducting zigzag gnr fet with negative differential resistance,” IEEE Trans. Nanotechnol., vol. 13, no. 1, pp. 16–22, 2014, doi: 10.1109/TNANO.2013.2279035. [41] B. Mandal, S. Sarkar, A. Pramanik, and P. Sarkar, “Electronic structure and transport properties of sulfur-passivated graphene nanoribbons,” J. Appl. Phys., vol. 112, no. 11, 2012, doi: 10.1063/1.4768524. [42] G. Lee and K. Cho, “Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 79, no. 16, pp. 20–24, 2009, doi: 10.1103/PhysRevB.79.165440. [43] S.-M. Choi, S.-H. Jhi, and Y.-W. Son, “Effects of strain on electronic properties of graphene,” 2010, doi: 10.1103/PhysRevB.81.081407. [44] I. Y. Sahalianov, T. M. Radchenko, V. A. Tatarenko, G. Cuniberti, and Y. I. Prylutskyy, “Straintronics in graphene: Extra large electronic band gap induced by tensile and shear strains,” J. Appl. Phys., vol. 126, no. 5, Aug. 2019, doi: 10.1063/1.5095600. [45] H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene,” J. Mater. Chem., vol. 21, no. 10, pp. 3335–3345, Mar. 2011, doi: 10.1039/c0jm02922j. [46] R. Deji, B. C. Choudhary, and R. K. Sharma, “Novel hydrogen cyanide gas sensor: A simulation study of graphene nanoribbon doped with boron and phosphorus,” Phys. E Low-dimensional Syst. Nanostructures, vol. 134, p. 114844, Oct. 2021, doi: 10.1016/j.physe.2021.114844. [47] V. Georgakilas et al., “Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications,” Chem. Rev., vol. 112, no. 11, pp. 6156–6214, 2012, doi: 10.1021/cr3000412. [48] V. Georgakilas et al., “Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications,” Chemical Reviews, vol. 112, no. 11. American Chemical Society, pp. 6156–6214, Nov. 14, 2012, doi: 10.1021/cr3000412. [49] H. Zhang et al., “Aryl functionalization as a route to band gap engineering in single layer graphene devices,” Nano Lett., vol. 11, no. 10, pp. 4047–4051, Oct. 2011, doi: 10.1021/nl200803q. [50] M. Di Giovannantonio et al., “On-Surface Growth Dynamics of Graphene Nanoribbons: The Role of Halogen Functionalization,” ACS Nano, vol. 12, no. 1, pp. 74–81, Jan. 2018, doi: 10.1021/acsnano.7b07077. [51] S. Yang et al., “A DFT study of CO adsorption on the pristine, defective, In-doped and Sb-doped graphene and the effect of applied electric field,” Appl. Surf. Sci., vol. 480, no. November 2018, pp. 205–211, 2019, doi: 10.1016/j.apsusc.2019.02.244. [52] F. Chekin et al., “MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum,” Biosens. Bioelectron., vol. 85, pp. 807–813, 2016, doi: 10.1016/j.bios.2016.05.095. [53] P. K. Basu et al., “Graphene based E. coli sensor on flexible acetate sheet,” Sensors Actuators, B Chem., vol. 190, pp. 342–347, 2014, doi: 10.1016/j.snb.2013.08.080. [54] Y. H. Kwak et al., “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron., vol. 37, no. 1, pp. 82–87, 2012, doi: 10.1016/j.bios.2012.04.042. [55] N. S. Green and M. L. Norton, “Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review,” Anal. Chim. Acta, vol. 853, no. 1, pp. 127–142, 2015, doi: 10.1016/j.aca.2014.10.023. [56] L. Wu, L. Feng, J. Ren, and X. Qu, “Electrochemical detection of dopamine using porphyrin-functionalized graphene,” Biosens. Bioelectron., vol. 34, no. 1, pp. 57–62, Apr. 2012, doi: 10.1016/j.bios.2012.01.007. [57] P. Singh, P. Abedini Sohi, and M. Kahrizi, “Finite Element Modelling of Bandgap Engineered Graphene FET with the Application in Sensing Methanethiol Biomarker,” Sensors, vol. 21, no. 2, p. 580, Jan. 2021, doi: 10.3390/s21020580. [58] F. Schedin et al., “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater., vol. 6, no. 9, pp. 652–655, 2007, doi: 10.1038/nmat1967. [59] B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, and J. Wojtas, “Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques,” Bioanalysis, vol. 5, no. 18. Bioanalysis, pp. 2287–2306, Sep. 2013, doi: 10.4155/bio.13.183. [60] K. E. van Keulen, M. E. Jansen, R. W. M. Schrauwen, J. J. Kolkman, and P. D. Siersema, “Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer,” Aliment. Pharmacol. Ther., vol. 51, no. 3, pp. 334–346, Feb. 2020, doi: 10.1111/apt.15622. [61] J. Pawliszyn, “Development of SPME Devices and Coatings,” in Handbook of Solid Phase Microextraction, Elsevier Inc., 2012, pp. 61–97. [62] H. Chen, X. Qi, J. Ma, C. Zhang, H. Feng, and M. Yao, “Breath-borne VOC Biomarkers for COVID-19,” medRxiv, p. 2020.06.21.20136523, Jan. 2020, doi: 10.1101/2020.06.21.20136523. [63] I. H. Cho, D. H. Kim, and S. Park, “Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis,” Biomaterials Research, vol. 24, no. 1. BioMed Central Ltd., pp. 1–12, Feb. 04, 2020, doi: 10.1186/s40824-019-0181-y. [64] V. T. Le, Y. Vasseghian, E. N. Dragoi, M. Moradi, and A. Mousavi Khaneghah, “A review on graphene-based electrochemical sensor for mycotoxins detection,” Food Chem. Toxicol., vol. 148, p. 111931, Feb. 2021, doi: 10.1016/j.fct.2020.111931. [65] J. Peña-Bahamonde, H. N. Nguyen, S. K. Fanourakis, and D. F. Rodrigues, “Recent advances in graphene-based biosensor technology with applications in life sciences,” Journal of Nanobiotechnology, vol. 16, no. 1. BioMed Central Ltd., p. 75, Sep. 22, 2018, doi: 10.1186/s12951-018-0400-z. [66] A. Agharazy Dormeny, P. Abedini Sohi, and M. Kahrizi, “Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures,” Results Phys., vol. 16, p. 102869, Mar. 2020, doi: 10.1016/j.rinp.2019.102869. [67] P. A. Sohi and M. Kahrizi, “Principles and Applications of Nanoplasmonics in Biological and Chemical Sensing: A Review,” in Recent Advances in Nanophotonics - Fundamentals and Applications, IntechOpen, 2020. [68] Y. Bai, T. Xu, and X. Zhang, “Graphene-based biosensors for detection of biomarkers,” Micromachines, vol. 11, no. 1. MDPI AG, Jan. 01, 2020, doi: 10.3390/mi11010060. [69] M. B. Hossain, M. M. Rana, L. F. Abdulrazak, S. Mitra, and M. Rahman, “Graphene-MoS2 with TiO2[sbnd]SiO2 layers based surface plasmon resonance biosensor: Numerical development for formalin detection,” Biochem. Biophys. Reports, vol. 18, p. 100639, Jul. 2019, doi: 10.1016/j.bbrep.2019.100639. [70] Q. Wang, J. Y. Jing, and B. T. Wang, “Highly Sensitive SPR Biosensor Based on Graphene Oxide and Staphylococcal Protein A Co-Modified TFBG for Human IgG Detection,” IEEE Trans. Instrum. Meas., 2018, doi: 10.1109/TIM.2018.2875961. [71] M. B. Hossain, M. M. Islam, L. F. Abdulrazak, M. M. Rana, T. B. A. Akib, and M. Hassan, “Graphene-Coated Optical Fiber SPR Biosensor for BRCA1 and BRCA2 Breast Cancer Biomarker Detection: a Numerical Design-Based Analysis,” Photonic Sensors, vol. 10, no. 1, pp. 67–79, Mar. 2020, doi: 10.1007/s13320-019-0556-7. [72] M. B. Hossain and M. M. Rana, “DNA Hybridization Detection Based on Resonance Frequency Readout in Graphene on Au SPR Biosensor,” J. Sensors, vol. 2016, 2016, doi: 10.1155/2016/6070742. [73] M. K. Anvarifard, Z. Ramezani, and I. S. Amiri, “Label-free detection of DNA by a dielectric modulated armchair-graphene nanoribbon FET based biosensor in a dual-nanogap setup,” Mater. Sci. Eng. C, vol. 117, p. 111293, Dec. 2020, doi: 10.1016/j.msec.2020.111293. [74] F. DJEFFAL, A. BENHAYA, K. TAMERSIT, and M. MEGUELLATI, “NEW DIELECTRIC MODULATED GRAPHENE (DMG) FETBASED SENSOR FOR HIGH-PERFORMANCE BIOMOLECULE SENSING APPLICATIONS,” Apr. 2015, pp. 401–414, doi: 10.1142/9789814667364_0030. [75] G. Wadhwa and B. Raj, “Label Free Detection of Biomolecules Using Charge-Plasma-Based Gate Underlap Dielectric Modulated Junctionless TFET,” J. Electron. Mater., vol. 47, no. 8, pp. 4683–4693, Aug. 2018, doi: 10.1007/s11664-018-6343-1. [76] Ajay, R. Narang, M. Saxena, and M. Gupta, “Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors,” Superlattices Microstruct., vol. 85, pp. 557–572, Jun. 2015, doi: 10.1016/j.spmi.2015.04.040. [77] P. Singh, P. A. Sohi, and M. Kahrizi, “In silico design and analysis of Pt functionalized graphene-based FET sensor for COVID-19 biomarkers: A DFT coupled FEM study,” Phys. E Low-dimensional Syst. Nanostructures, vol. 135, no. April 2021, p. 114972, 2021, doi: 10.1016/j.physe.2021.114972. [78] S. T. Epstein and C. M. Rosenthal, “The Hohenberg-Kohn theorem,” J. Chem. Phys., vol. 64, no. 1, pp. 247–249, 1976, doi: 10.1063/1.431969. [79] E. J. Bylaska, M. Holst, and J. H. Weare, “Adaptive finite element method for solving the exact kohn-sham equation of density functional theory,” J. Chem. Theory Comput., vol. 5, no. 4, pp. 937–948, 2009, doi: 10.1021/ct800350j. [80] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996, doi: 10.1103/PhysRevLett.77.3865. [81] M. Bokdam, P. A. Khomyakov, G. Brocks, and P. J. Kelly, “Field effect doping of graphene in metal|dielectric|graphene heterostructures: A model based upon first-principles calculations,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 87, no. 7, pp. 1–13, 2013, doi: 10.1103/PhysRevB.87.075414. [82] “Semiconductors,” in Solid State Physics, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 293–351. [83] M. A. Green, “Intrinsic concentration, effective densities of states, and effective mass in silicon,” J. Appl. Phys., vol. 67, no. 6, pp. 2944–2954, Mar. 1990, doi: 10.1063/1.345414. [84] T. Gunst, T. Markussen, K. Stokbro, and M. Brandbyge, “First-principles method for electron-phonon coupling and electron mobility: Applications to two-dimensional materials,” Phys. Rev. B, vol. 93, no. 3, p. 035414, Jan. 2016, doi: 10.1103/PhysRevB.93.035414. [85] K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, “Unraveling the acoustic electron-phonon interaction in graphene,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 85, no. 16, p. 165440, Apr. 2012, doi: 10.1103/PhysRevB.85.165440. [86] M. Bhattacharjee, N. Mandal, H. Nemade, and D. Bandyopadhyay, “Simulation of a Voltage Controlled Resistor Mimicking the Geometry of a MOSFET Device having Graphite Channel,” no. V, pp. 3–6, 2014. [87] M. M. Montemore and J. W. Medlin, “A unified picture of adsorption on transition metals through different atoms,” J. Am. Chem. Soc., vol. 136, no. 26, pp. 9272–9275, 2014, doi: 10.1021/ja504193w. [88] P. Singh, P. A. Sohi, and M. Kahrizi, “Effect of point defects in armchair graphene nanoribbons for biosensing of Methanethiol biomarkers: A DFT Study,” 2021 IEEE 21st Int. Conf. Nanotechnol., pp. 142–145, Jul. 2021, doi: 10.1109/NANO51122.2021.9514321. [89] “Methanethiol | CH3SH - PubChem.” https://pubchem.ncbi.nlm.nih.gov/compound/methanethiol (accessed Oct. 07, 2020). [90] G. K. Walia and D. K. K. Randhawa, “Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts,” J. Mol. Model., vol. 24, no. 4, 2018, doi: 10.1007/s00894-018-3631-x. [91] D. A. Neamen, “Semiconductor physics and devices : basic principles,” p. 758, 2012. [92] W. Zhou et al., “Designing sub-10-nm Metal-Oxide-Semiconductor Field-Effect Transistors via Ballistic Transport and Disparate Effective Mass: The Case of Two-Dimensional Bi N,” Phys. Rev. Appl., vol. 13, no. 4, p. 1, 2020, doi: 10.1103/PhysRevApplied.13.044066. [93] X. Gu and R. Yang, “First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene,” J. Appl. Phys., vol. 117, no. 2, p. 025102, Jan. 2015, doi: 10.1063/1.4905540. [94] P. Van Mieghem, “Theory of Band Tails in Heavily Doped Semiconductors,” Rev. Mod. Phys., vol. 64, no. 3, pp. 755–792, 1992. [95] P. A. Haddad, D. Flandre, and J. P. Raskin, “Intrinsic rectification in common-gated graphene field-effect transistors,” Nano Energy, vol. 43, no. October 2017, pp. 37–46, 2018, doi: 10.1016/j.nanoen.2017.10.049.