Ashcroft, M. B., Gollan, J. R., Warton, D. I., & Ramp, D. (2012). A novel approach to quantify and locate potential microrefugia using topoclimate, climate stability, and isolation from the matrix. Global Change Biology, 18(6), 1866-1879. https://doi.org/10.1111/j.1365-2486.2012.02661.x Bernacchi, C. J., & VanLoocke, A. (2015). Terrestrial Ecosystems in a Changing Environment: A Dominant Role for Water. Annual Review of Plant Biology, 66:1, 599-622. https://doi.org/10.1146/annurev-arplant-043014-114834 Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R, Second edition. Springer, NY. https://doi.org/10.1007/978-1-4614-7618-4 Borcard, D., Gellet, F., & Legendre, P. (2018). Numerical Ecology with R (second ed.), Springer International Publishing. https://doi.org/10.1007/978-3-319-71404-2 Bose, R., Ramesh, B. R., Pélissier, R., & Munoz, F. (2019). Phylogenetic diversity in the Western Ghats biodiversity hotspot reflects environmental filtering and past niche diversification of trees. Journal of Biogeography, 46(1), 145–157. https://doi.org/10.1111/jbi.13464 Bray, J. R., & Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs, 27(4), 325–349. https://doi.org/10.2307/1942268 Cahill, J. F., Kembel, S. W., Lamb, E. G., & Keddy, P. A. (2008). Does phylogenetic relatedness influence the strength of competition among vascular plants? Perspectives in Plant Ecology, Evolution and Systematics, 10(1), 41–50. https://doi.org/10.1016/j.ppees.2007.10.001 Cavender-Bares, J., Kozak, K. H., Fine, P. V. A., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12(7), 693–715. https://doi.org/10.1111/j.1461-0248.2009.01314.x Chandra, K. K., & Bhardwaj, A. K. (2015). Incidence of forest fire in India and its effect on terrestrial ecosystem dynamics, nutrient and microbial status of soil. International Journal of Agriculture and Forestry, 5(2), 69-78. 10.5923/j.ijaf.20150502.01 Chave, J., Réjou-Méchain, M., Búrquez, A., et al. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629 Chen, I. C., Hill, J. K., Ohlemüller, R., et al. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024-2026. https://doi.org/10.1126/science.1206432 Chu, C., Lutz, J. A., Král, K., et al. (2019). Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecology Letters, 22(2), 245-255. https://doi.org/10.1111/ele.13175 D’Antonio, C. M., & Vitousek, P. M. (1992). Biological Invasions by Exotic Grasses, the Grass/Fire Cycle, and Global Change. Annual Review of Ecology and Systematics, 23, 63–87. http://www.jstor.org/stable/2097282 Davies, T. J. (2021). Ecophylogenetics redux. Ecology Letters, 24(5), 1073–1088. https://doi.org/10.1111/ele.13682 Divya, B., Ramesh, B. R., & Karanth, K. P. (2021). Contrasting patterns of phylogenetic diversity across climatic zones of Western Ghats: A biodiversity hotspot in peninsular India. Journal of Systematics and Evolution, 59(2), 240–250. https://doi.org/10.1111/jse.12663 Dobrowski, S. Z. (2011). A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology, 17, 1022-1035. https://doi.org/10.1111/j.1365-2486.2010.02263.x Dray, S., Legendre, P., & Peres-Neto, P. R. (2006). Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecological Modelling, 196, 483–493. https://doi.org/10.1016/j.ecolmodel.2006.02.015 Elliott, J. A., Toth, B. M., Granger, R. J., & Pomeroy, J. W. (1998). Soil moisture storage in mature and replanted sub-humid boreal forest stands. Canadian Journal of Soil Science, 78(1), 17–27. https://doi.org/10.4141/S97-021 Elton, C. (1946). Competition and the structure of ecological communities. Journal of Animal Ecology, 15(1), 54–68. https://doi.org/10.2307/1625 Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1), 1–10. https://doi.org/10.1016/0006-3207(92)91201-3 Fine, P. V. A., & Kembel, S. W. (2011). Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography, 34, 552–565. https://doi.org/10.1111/j.1600-0587.2010.06548.x Freckleton, R. P., & Jetz, W. (2008). Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proceedings of the Royal Society of London B: Biological Sciences, 276, 21–30. https://doi.org/10.1098/rspb.2008.0905 Givnish, T. J. (2001). On the causes of gradients in tropical tree diversity. Journal of Ecology, 87(2), 193–210. https://doi.org/10.1046/j.1365-2745.1999.00333.x Graham, C. H., & Fine, P. V. A. (2008). Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time. Ecology Letters, 11(12), 1265–1277 (2008). https://doi.org/10.1111/j.1461-0248.2008.01256.x Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 359(1442), 183–195. https://doi.org/10.1098/rstb.2003.1388 Hijmans, R. J. (2021). raster: Geographic Data Analysis and Modeling. R package version 3.5-2. https://CRAN.R-project.org/package=raster Huang, M., Piao, S., Ciais, P., et al. (2019). Air temperature optima of vegetation productivity across global biomes. Nature Ecology & Evolution, 3(5), 772–779. https://doi.org/10.1038/s41559-019-0838-x Hutchinson, G. E. (1959). Homage to Santa Rosalia, or why are there so many kinds of animals? The American Naturalist, 93(870), 145–159. Jin, Y., & Qian, H. (2019). V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42(8), 1353–1359. https://doi.org/10.1111/ecog.04434 Karna, Y. K., Penman, T. D., Aponte, C., et al. (2020). Persistent changes in the horizontal and vertical canopy structure of fire-tolerant forests after severe fire as quantified using multi-temporal airborne lidar data. Forest Ecology and Management, 472, 118255. https://doi.org/10.1016/j.foreco.2020.118255 Kembel, S. W., Cowan, P. D., Helmus, M. R., et al. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463–1464. https://doi.org/10.1093/bioinformatics/btq166 Kodandapani, N., Cochrane, M. A., & Sukumar, R. (2008). A comparative analysis of spatial, temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in the Western Ghats, India. Forest Ecology and Management, 256(4), 607– 617. https://doi.org/10.1016/j.foreco.2008.05.006 Körner, C. (2007). The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006 Lenoir, J., & Svenning, J. C. (2015). Climate-Related Range Shifts—A Global Multidimensional Synthesis and New Research Directions. Ecography, 38, 15-28. http://dx.doi.org/10.1111/ecog.00967 Lomolino, & Mark. V. (2001). Elevation gradients of species-density: Historical and prospective views: Elevation gradients of species-density. Global Ecology and Biogeography, 10(1), 3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x Lozupone, C., Hamady, M., & Knight, R. (2006). UniFrac – An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics, 7(1), 371. https://doi.org/10.1186/1471-2105-7-371 Lozupone, C., & Knight, R. (2005). UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Applied and Environmental Microbiology, 71(12), 8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005 MacArthur, R., & Levins, R. (1967). The limiting similarity, convergence and divergence of coexisting species. The American Naturalist, 101(921), 377–385. Madani, N., Kimball, J. S., Jones, L. A., et al. (2017). Global Analysis of Bioclimatic Controls on Ecosystem Productivity Using Satellite Observations of Solar-Induced Chlorophyll Fluorescence. Remote Sensing, 9(6), 530. https://doi.org/10.3390/rs9060530 Mayfield, M. M., & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13(9), 1085–1093. https://doi.org/10.1111/j.1461-0248.2010.01509.x Mazel, F., Davies, T. J., Gallien, L., et al. (2016). Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography, 39(10), 913–920. https://doi.org/10.1111/ecog.01694 McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PloS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 Miles, L., Newton, A. C., DeFries, R. S., et al. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3), 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.x Mondal N., & Sukumar, R. (2016). Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient. PloS ONE, 11(7): e0159691. https://doi.org/10.1371/journal.pone.0159691 Myers, J. A., Chase, J. M., Jiménez, I., et al. (2012). Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16(2), 151-157. https://doi.org/10.1111/ele.12021 Nemani, R. R., Keeling, C. D., Hashimoto, H., et al. (2003). Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science, 300(5625), 1560-1563. https://doi.org/10.1126/science.1082750 Nóbrega, C. C., Brando, P. M., Silvério, D. V., et al. (2019). Effects of experimental fires on the phylogenetic and functional diversity of woody species in a neotropical forest. Forest Ecology and Management, 450(117497). https://doi.org/10.1016/j.foreco.2019.117497 Noy-Meir, I. (1973). Desert Ecosystems and Producers. Annual Review of Ecology and Systematics, 4(2), 25-51. https://doi.org/10.1146/annurev.es.04.110173.000325 Oksanen, J., Blanchet, F. G., Friendly, M., et al. (2020). vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan Oldén, A., Komonen, A., Tervonen, K., & Halme, P. (2017). Grazing and abandonment determine different tree dynamics in wood-pastures. Ambio, 46(2), 227–236. https://doi.org/10.1007/s13280-016-0821-6 Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial data in R. R News 5(2), https://cran.r-project.org/doc/Rnews/. Peres-Neto, P. R., & Legendre, P. (2010). Estimating and controlling for spatial structure in the study of ecological communities. Global Ecology and Biogeography, 19, 174-184. https://doi.org/10.1111/j.1466-8238.2009.00506.x Pimm, S. L., Russell, G. J., Gittleman, J. L., & Brooks, T. M. (1995). The future of biodiversity. Science, 269(5222), 347–350. https://doi.org/10.1126/science.269.5222.347 Provan, J., & Bennett, K. D., (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23(10), 564–571. https://doi.org/10.1016/j.tree.2008.06.010 R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Reddy, C. S., Jha, C. S., Diwakar, P. G., & Dadhwal, V. K. (2015). Nationwide classification of forest types of India using remote sensing and GIS. Environmental Monitoring and Assessment, 187(12), 777. https://doi.org/10.1007/s10661-015-4990-8 Saha, S., & Howe, H. F. (2003). Species composition and fire in a dry deciduous forest. Ecology, 84(12), 3118–3123. https://doi.org/10.1890/02-3051 Salgado-Luarte, C., Escobedo, V. M., Stotz, G. C., et al. (2019). Goat grazing reduces diversity and leads to functional, taxonomic, and phylogenetic homogenization in an arid shrubland. Land Degradation & Development, 30(2), 178–189. https://doi.org/10.1002/ldr.3208 Sathya, M., & Jayakumar, S. (2017). Post-fire regeneration status of tree species in a tropical dry deciduous forest of Southern India. Journal of Tropical Forest Science, 29(3), 305–317. https://doi.org/10.26525/jtfs2017.29.3.305317 Schmerbeck, J., & Fiener, P. (2015). Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India. Environmental Management, 56(2), 355–372. https://doi.org/10.1007/s00267-015-0502-4 Schmerbeck, J., & Seeland, K. (2007). Fire supported forest utilisation of a degraded dry forest as a means of sustainable local forest management in Tamil Nadu/South India. Land Use Policy, 24(1), 62–71. https://doi.org/10.1016/j.landusepol.2006.01.001 Schulz, K., Guschal, M., Kowarik, I., et al. (2019). Grazing reduces plant species diversity of Caatinga dry forests in northeastern Brazil. Applied Vegetation Science, 22(2), 348–359. https://doi.org/10.1111/avsc.12434 Shivaprakash, K. N., Ramesh, B. R., Umashaanker, R., & Dayanandan, S. (2018). Functional trait and community phylogenetic analyses reveal environmental filtering as the major determinant of assembly of tropical forest tree communities in the Western Ghats biodiversity hotspot in India. Forest Ecosystems, 5(1), 25. https://doi.org/10.1186/s40663-018-0144-0 Shooner, S., Davies, T. J., Saikia, P., et al. (2018). Phylogenetic diversity patterns in Himalayan forests reveal evidence for environmental filtering of distinct lineages. Ecosphere, 9(5), e02157. https://doi.org/10.1002/ecs2.2157 Simberloff, D. (1970). Taxonomic diversity of island biotas. Evolution, 24(1), 23–47. https://doi.org/10.2307/2406712 Smith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105(3), 302–314. https://doi.org/10.1002/ajb2.1019 Sousa, W. P. (1984). The Role of Disturbance in Natural Communities. Annual Review of Ecology and Systematics, 15(1), 353–391. https://doi.org/10.1146/annurev.es.15.110184.002033 Stewart, J. R., Lister, A. M., Barnes, I., & Dalen, L. (2010). Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society of London B: Biological Sciences, 277, 661–671. https://doi.org/10.1098/rspb.2009.1272 Swenson, N. G., Anglada-Cordero, P., & Barone, J. A. (2011). Deterministic tropical tree community turnover: Evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society of London B: Biological Sciences, 278(1707), 877–884. https://doi.org/10.1098/rspb.2010.1369 Venail, P. A., Narwani, A., Fritschie, K., et al. (2014). The influence of phylogenetic relatedness on species interactions among freshwater green algae in a mesocosm experiment. Journal of Ecology, 102(5), 1288–1299. https://doi.org/10.1111/1365-2745.12271 Verma, S., & Jayakumar, S. (2015). Post-fire regeneration dynamics of tree species in a tropical dry deciduous forest, Western Ghats, India. Forest Ecology and Management, 341, 75–82. https://doi.org/10.1016/j.foreco.2015.01.005 von Arx, G., Graf Pannatier, E., Thimonier, A., & Rebetez, M. (2013). Microclimate in forests with varying leaf area index and soil moisture: Potential implications for seedling establishment in a changing climate. Journal of Ecology, 101(5), 1201–1213. https://doi.org/10.1111/1365-2745.12121 Webb, C. O. (2000). Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. The American Naturalist, 156(2), 145–155. https://doi.org/10.1086/303378 Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and Community Ecology. Annual Review of Ecology and Systematics, 33(1), 475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448 Weber, L., VanDerWal, J., Schmidt, S., et al. (2014). Patterns of rain forest plant endemism in subtropical Australia relate to stable mesic refugia and species dispersal limitations. Journal of Biogeography, 41, 222–238. https://doi.org/10.1111/jbi.12219 Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30(3), 279–338. https://doi.org/10.2307/1943563 Williams, C. B. (1947). The generic relations of species in small ecological communities. Journal of Animal Ecology, 16(1), 11–18. https://doi.org/10.2307/1502 Zanne, A. E., Tank, D. C., Cornwell, W. K., et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506(7486), 89–92. https://doi.org/10.1038/nature12872 Zhang, J., Mayor, S. J., & He, F. (2014). Does disturbance regime change community assembly of angiosperm plant communities in the boreal forest? Journal of Plant Ecology, 7(2), 188–201. https://doi.org/10.1093/jpe/rtt068 Zhang, J.-L., Swenson, N. G., Chen, S.-B., et al. (2013). Phylogenetic beta diversity in tropical forests: implications for the roles of geographical and environmental distance. Journal of Systematics and Evolution, 51(1), 71–85. https://doi.org/10.1111/j.1759-6831.2012.00220.x Zhu, J., Zhang, Y., Wang, W., et al. (2020). Species turnover drives grassland community to phylogenetic clustering over long-term grazing disturbance. Journal of Plant Ecology, 13(2), 157–164. https://doi.org/10.1093/jpe/rtz057