Antonescu, C. N., McGraw, T. E., & Klip, A. (2014). Reciprocal Regulation of Endocytosis and Metabolism. Cold Spring Harbor Perspectives in Biology, 6(7), a016964–a016964. https://doi.org/10.1101/cshperspect.a016964 Atanasova, V. S., Jiang, Q., Prisco, M., Gruber, C., Piñón Hofbauer, J., Chen, M., Has, C., Bruckner-Tuderman, L., McGrath, J. A., Uitto, J., & South, A. P. (2017). Amlexanox Enhances Premature Termination Codon Read-Through in COL7A1 and Expression of Full Length Type VII Collagen: Potential Therapy for Recessive Dystrophic Epidermolysis Bullosa. Journal of Investigative Dermatology, 137(9), 1842–1849. https://doi.org/10.1016/j.jid.2017.05.011 Barlowe, C. (1994). COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell, 77(6), 895–907. https://doi.org/10.1016/0092-8674(94)90138-4 Bassik, M. C., Kampmann, M., Lebbink, R. J., Wang, S., Hein, M. Y., Poser, I., Weibezahn, J., Horlbeck, M. A., Chen, S., Mann, M., Hyman, A. A., LeProust, E. M., McManus, M. T., & Weissman, J. S. (2013). A Systematic Mammalian Genetic Interaction Map Reveals Pathways Underlying Ricin Susceptibility. Cell, 152(4), 909–922. https://doi.org/10.1016/j.cell.2013.01.030 Behrends, C., Sowa, M. E., Gygi, S. P., & Harper, J. W. (2010). Network organization of the human autophagy system. Nature, 466(7302), 68–76. https://doi.org/10.1038/nature09204 Bi, X., Corpina, R. A., & Goldberg, J. (2002). Structure of the Sec23/24–Sar1 pre-budding complex of the COPII vesicle coat. Nature, 419(6904), 271–277. https://doi.org/10.1038/nature01040 Bidou, L., Hatin, I., Perez, N., Allamand, V., Panthier, J.-J., & Rousset, J.-P. (2004). Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Therapy, 11(7), 619–627. https://doi.org/10.1038/sj.gt.3302211 Blomen, V. A., Májek, P., Jae, L. T., Bigenzahn, J. W., Nieuwenhuis, J., Staring, J., Sacco, R., van Diemen, F. R., Olk, N., Stukalov, A., Marceau, C., Janssen, H., Carette, J. E., Bennett, K. L., Colinge, J., Superti-Furga, G., & Brummelkamp, T. R. (2015). Gene essentiality and synthetic lethality in haploid human cells. Science, 350(6264), 1092–1096. https://doi.org/10.1126/science.aac7557 Bögershausen, N., Shahrzad, N., Chong, J. X., von Kleist-Retzow, J.-C., Stanga, D., Li, Y., Bernier, F. P., Loucks, C. M., Wirth, R., Puffenberger, E. G., Hegele, R. A., Schreml, J., Lapointe, G., Keupp, K., Brett, C. L., Anderson, R., Hahn, A., Innes, A. M., Suchowersky, O., … Lamont, R. E. (2013). Recessive TRAPPC11 Mutations Cause a Disease Spectrum of Limb Girdle Muscular Dystrophy and Myopathy with Movement Disorder and Intellectual Disability. The American Journal of Human Genetics, 93(1), 181–190. https://doi.org/10.1016/j.ajhg.2013.05.028 Boncompain, G., Divoux, S., Gareil, N., de Forges, H., Lescure, A., Latreche, L., Mercanti, V., Jollivet, F., Raposo, G., & Perez, F. (2012). Synchronization of secretory protein traffic in populations of cells. Nature Methods, 9(5), 493–498. https://doi.org/10.1038/nmeth.1928 Bonifacino, J. S., & Glick, B. S. (2004). The Mechanisms of Vesicle Budding and Fusion. Cell, 116(2), 153–166. https://doi.org/10.1016/S0092-8674(03)01079-1 Bonifacino, J. S., & Lippincott-Schwartz, J. (2003). Coat proteins: Shaping membrane transport. Nature Reviews Molecular Cell Biology, 4(5), 409–414. https://doi.org/10.1038/nrm1099 Boya, P., Reggiori, F., & Codogno, P. (2013). Emerging regulation and functions of autophagy. Nature Cell Biology, 15(7), 713–720. https://doi.org/10.1038/ncb2788 Bröcker, C., Engelbrecht-Vandré, S., & Ungermann, C. (2010). Multisubunit Tethering Complexes and Their Role in Membrane Fusion. Current Biology, 20(21), R943–R952. https://doi.org/10.1016/j.cub.2010.09.015 Brunet, S., Noueihed, B., Shahrzad, N., Saint-Dic, D., Hasaj, B., Guan, T. L., Moores, A., Barlowe, C., & Sacher, M. (2012). The SMS domain of Trs23p is responsible for the in vitro appearance of the TRAPP I complex in Saccharomyces cerevisiae. Cellular Logistics, 2(1), 28–42. https://doi.org/10.4161/cl.19414 Brunet, S., Shahrzad, N., Saint-Dic, D., Dutczak, H., & Sacher, M. (2013). A trs20 Mutation That Mimics an SEDT-Causing Mutation Blocks Selective and Non-Selective Autophagy: A Model for TRAPP III Organization: trs20D46Y Affects Autophagy. Traffic, 14(10), 1091–1104. https://doi.org/10.1111/tra.12095 Cai, Y., Chin, H. F., Lazarova, D., Menon, S., Fu, C., Cai, H., Sclafani, A., Rodgers, D. W., De La Cruz, E. M., Ferro-Novick, S., & Reinisch, K. M. (2008). The Structural Basis for Activation of the Rab Ypt1p by the TRAPP Membrane-Tethering Complexes. Cell, 133(7), 1202–1213. https://doi.org/10.1016/j.cell.2008.04.049 DeRossi, C., Vacaru, A., Rafiq, R., Cinaroglu, A., Imrie, D., Nayar, S., Baryshnikova, A., Milev, M. P., Stanga, D., Kadakia, D., Gao, N., Chu, J., Freeze, H. H., Lehrman, M. A., Sacher, M., & Sadler, K. C. (2016). Trappc11 is required for protein glycosylation in zebrafish and humans. Molecular Biology of the Cell, 27(8), 1220–1234. https://doi.org/10.1091/mbc.E15-08-0557 Eintracht, J., Forsythe, E., May-Simera, H., & Moosajee, M. (2021). Translational readthrough of ciliopathy genes BBS2 and ALMS1 restores protein, ciliogenesis and function in patient fibroblasts. EBioMedicine, 70, 103515. https://doi.org/10.1016/j.ebiom.2021.103515 Eskelinen, E.-L. (2005). Maturation of Autophagic Vacuoles in Mammalian Cells. Autophagy, 1(1), 1–10. https://doi.org/10.4161/auto.1.1.1270 Fasshauer, D., Eliason, W. K., Brünger, A. T., & Jahn, R. (1998). Identification of a Minimal Core of the Synaptic SNARE Complex Sufficient for Reversible Assembly and Disassembly. Biochemistry, 37(29), 10354–10362. https://doi.org/10.1021/bi980542h Fee, D. B., Harmelink, M., Monrad, P., & Pyzik, E. (2017). Siblings With Mutations in TRAPPC11 Presenting With Limb-Girdle Muscular Dystrophy 2S. Journal of Clinical Neuromuscular Disease, 19(1), 27–30. https://doi.org/10.1097/CND.0000000000000173 Galindo, A., Planelles‐Herrero, V. J., Degliesposti, G., & Munro, S. (2021). Cryo‐EM structure of metazoan TRAPPIII, the multi‐subunit complex that activates the GTPase Rab1. The EMBO Journal, 40(12). https://doi.org/10.15252/embj.2020107608 Gonzalez-Hilarion, S., Beghyn, T., Jia, J., Debreuck, N., Berte, G., Mamchaoui, K., Mouly, V., Gruenert, D. C., Déprez, B., & Lejeune, F. (2012). Rescue of nonsense mutations by amlexanox in human cells. Orphanet Journal of Rare Diseases, 7(1), 58. https://doi.org/10.1186/1750-1172-7-58 Gunn, G., Dai, Y., Du, M., Belakhov, V., Kandasamy, J., Schoeb, T. R., Baasov, T., Bedwell, D. M., & Keeling, K. M. (2014). Long-term nonsense suppression therapy moderates MPS I-H disease progression. Molecular Genetics and Metabolism, 111(3), 374–381. https://doi.org/10.1016/j.ymgme.2013.12.007 Hart, T., Chandrashekhar, M., Aregger, M., Steinhart, Z., Brown, K. R., MacLeod, G., Mis, M., Zimmermann, M., Fradet-Turcotte, A., Sun, S., Mero, P., Dirks, P., Sidhu, S., Roth, F. P., Rissland, O. S., Durocher, D., Angers, S., & Moffat, J. (2015). High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell, 163(6), 1515–1526. https://doi.org/10.1016/j.cell.2015.11.015 Hosseini-Farahabadi, S., Baradaran-Heravi, A., Zimmerman, C., Choi, K., Flibotte, S., & Roberge, M. (2021). Small molecule Y-320 stimulates ribosome biogenesis, protein synthesis, and aminoglycoside-induced premature termination codon readthrough. PLOS Biology, 19(5), e3001221. https://doi.org/10.1371/journal.pbio.3001221 Howell, G. J., Holloway, Z. G., Cobbold, C., Monaco, A. P., & Ponnambalam, S. (2006). Cell Biology of Membrane Trafficking in Human Disease. In International Review of Cytology (Vol. 252, pp. 1–69). Elsevier. https://doi.org/10.1016/S0074-7696(06)52005-4 Joiner, A. M., Phillips, B. P., Yugandhar, K., Sanford, E. J., Smolka, M. B., Yu, H., Miller, E. A., & Fromme, J. C. (2021). Structural basis of TRAPPIII‐mediated Rab1 activation. The EMBO Journal, 40(12). https://doi.org/10.15252/embj.2020107607 Kabeya, Y. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal, 19(21), 5720–5728. https://doi.org/10.1093/emboj/19.21.5720 Kim, J. J., Lipatova, Z., & Segev, N. (2016). TRAPP Complexes in Secretion and Autophagy. Frontiers in Cell and Developmental Biology, 4. https://doi.org/10.3389/fcell.2016.00020 Kishi-Itakura, C., Koyama-Honda, I., Itakura, E., & Mizushima, N. (2014). Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. Journal of Cell Science, jcs.156034. https://doi.org/10.1242/jcs.156034 Klann, M., Koeppl, H., & Reuss, M. (2012). Spatial Modeling of Vesicle Transport and the Cytoskeleton: The Challenge of Hitting the Right Road. PLoS ONE, 7(1), e29645. https://doi.org/10.1371/journal.pone.0029645 Klionsky, D. J., Abdel-Aziz, A. K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., Abeliovich, H., Abildgaard, M. H., Abudu, Y. P., Acevedo-Arozena, A., Adamopoulos, I. E., Adeli, K., Adolph, T. E., Adornetto, A., Aflaki, E., Agam, G., Agarwal, A., Aggarwal, B. B., Agnello, M., … Tong, C.-K. (2021). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1. Autophagy, 17(1), 1–382. https://doi.org/10.1080/15548627.2020.1797280 Koehler, K., Milev, M. P., Prematilake, K., Reschke, F., Kutzner, S., Jühlen, R., Landgraf, D., Utine, E., Hazan, F., Diniz, G., Schuelke, M., Huebner, A., & Sacher, M. (2017). A novel TRAPPC11 mutation in two Turkish families associated with cerebral atrophy, global retardation, scoliosis, achalasia and alacrima. Journal of Medical Genetics, 54(3), 176–185. https://doi.org/10.1136/jmedgenet-2016-104108 Larson, A. A., Baker, P. R., Milev, M. P., Press, C. A., Sokol, R. J., Cox, M. O., Lekostaj, J. K., Stence, A. A., Bossler, A. D., Mueller, J. M., Prematilake, K., Tadjo, T. F., Williams, C. A., Sacher, M., & Moore, S. A. (2018). TRAPPC11 and GOSR2 mutations associate with hypoglycosylation of α-dystroglycan and muscular dystrophy. Skeletal Muscle, 8(1), 17. https://doi.org/10.1186/s13395-018-0163-0 Lejeune, F. (2017). Nonsense-mediated mRNA decay at the crossroads of many cellular pathways. BMB Reports, 50(4), 175–185. https://doi.org/10.5483/BMBRep.2017.50.4.015 Letourneur, F., Gaynor, E. C., Hennecke, S., Démollière, C., Duden, R., Emr, S. D., Riezman, H., & Cosson, P. (1994). Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell, 79(7), 1199–1207. https://doi.org/10.1016/0092-8674(94)90011-6 Liang, W.-C., Zhu, W., Mitsuhashi, S., Noguchi, S., Sacher, M., Ogawa, M., Shih, H.-H., Jong, Y.-J., & Nishino, I. (2015). Congenital muscular dystrophy with fatty liver and infantile-onset cataract caused by TRAPPC11 mutations: Broadening of the phenotype. Skeletal Muscle, 5(1), 29. https://doi.org/10.1186/s13395-015-0056-4 Makhoul, C., Gosavi, P., & Gleeson, P. A. (2019). Golgi Dynamics: The Morphology of the Mammalian Golgi Apparatus in Health and Disease. Frontiers in Cell and Developmental Biology, 7, 112. https://doi.org/10.3389/fcell.2019.00112 Maquat, L. E. (2004). Nonsense-mediated mRNA decay: Splicing, translation and mRNP dynamics. Nature Reviews Molecular Cell Biology, 5(2), 89–99. https://doi.org/10.1038/nrm1310 Matalonga, L., Bravo, M., Serra-Peinado, C., García-Pelegrí, E., Ugarteburu, O., Vidal, S., Llambrich, M., Quintana, E., Fuster-Jorge, P., Gonzalez-Bravo, M. N., Beltran, S., Dopazo, J., Garcia-Garcia, F., Foulquier, F., Matthijs, G., Mills, P., Ribes, A., Egea, G., Briones, P., … Girós, M. (2017). Mutations in TRAPPC11 are associated with a congenital disorder of glycosylation: HUMAN MUTATION. Human Mutation, 38(2), 148–151. https://doi.org/10.1002/humu.23145 Michorowska, S. (2021). Ataluren—Promising Therapeutic Premature Termination Codon Readthrough Frontrunner. Pharmaceuticals, 14(8), 785. https://doi.org/10.3390/ph14080785 Milev, M. P., Stanga, D., Schänzer, A., Nascimento, A., Saint-Dic, D., Ortez, C., Natera-de Benito, D., Barrios, D. G., Colomer, J., Badosa, C., Jou, C., Gallano, P., Gonzalez-Quereda, L., Töpf, A., Johnson, K., Straub, V., Hahn, A., Sacher, M., & Jimenez-Mallebrera, C. (2019). Characterization of three TRAPPC11 variants suggests a critical role for the extreme carboxy terminus of the protein. Scientific Reports, 9(1), 14036. https://doi.org/10.1038/s41598-019-50415-6 Munot, P., McCrea, N., Torelli, S., Manzur, A., Sewry, C., Chambers, D., Feng, L., Ala, P., Zaharieva, I., Ragge, N., Roper, H., Marton, T., Cox, P., Milev, M. P., Liang, W., Maruyama, S., Nishino, I., Sacher, M., Phadke, R., & Muntoni, F. (2022). TRAPPC11 ‐related muscular dystrophy with hypoglycosylation of alpha‐dystroglycan in skeletal muscle and brain. Neuropathology and Applied Neurobiology, 48(2). https://doi.org/10.1111/nan.12771 Nagel-Wolfrum, K., Möller, F., Penner, I., Baasov, T., & Wolfrum, U. (2016). Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs). BioDrugs, 30(2), 49–74. https://doi.org/10.1007/s40259-016-0157-6 Ng, M. Y., Li, H., Ghelfi, M. D., Goldman, Y. E., & Cooperman, B. S. (2021). Ataluren and aminoglycosides stimulate read-through of nonsense codons by orthogonal mechanisms. Proceedings of the National Academy of Sciences, 118(2), e2020599118. https://doi.org/10.1073/pnas.2020599118 Nichols, B. J., Ungermann, C., Pelham, H. R. B., Wickner, W. T., & Haas, A. (1997). Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature, 387(6629), 199–202. https://doi.org/10.1038/387199a0 Palade, G. (1975). Intracellular Aspects of the Process of Protein Synthesis. Science, 189(4200), 347–358. https://doi.org/10.1126/science.1096303 Pearse, B. M. (1976). Clathrin: A unique protein associated with intracellular transfer of membrane by coated vesicles. Proceedings of the National Academy of Sciences, 73(4), 1255–1259. https://doi.org/10.1073/pnas.73.4.1255 Peltz, S. W., Morsy, M., Welch, E. M., & Jacobson, A. (2013). Ataluren as an Agent for Therapeutic Nonsense Suppression. Annual Review of Medicine, 64(1), 407–425. https://doi.org/10.1146/annurev-med-120611-144851 Rossi, G., Kolstad, K., Stone, S., Palluault, F., & Ferro-Novick, S. (1995). BET3 encodes a novel hydrophilic protein that acts in conjunction with yeast SNAREs. Molecular Biology of the Cell, 6(12), 1769–1780. https://doi.org/10.1091/mbc.6.12.1769 Rubinsztein, D. C., Shpilka, T., & Elazar, Z. (2012). Mechanisms of Autophagosome Biogenesis. Current Biology, 22(1), R29–R34. https://doi.org/10.1016/j.cub.2011.11.034 Sacher, M. (1998). TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. The EMBO Journal, 17(9), 2494–2503. https://doi.org/10.1093/emboj/17.9.2494 Sacher, M., Barrowman, J., Schieltz, D., Yates, J. R., & Ferro-Novick, S. (2000). Identification and characterization of five new subunits of TRAPP. European Journal of Cell Biology, 79(2), 71–80. https://doi.org/10.1078/S0171-9335(04)70009-6 Sacher, M., Shahrzad, N., Kamel, H., & Milev, M. P. (2019). TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)‐associated proteins. Traffic, 20(1), 5–26. https://doi.org/10.1111/tra.12615 Sagiv, Y. (2000). GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. The EMBO Journal, 19(7), 1494–1504. https://doi.org/10.1093/emboj/19.7.1494 Samanta, A., Stingl, K., Kohl, S., Ries, J., Linnert, J., & Nagel-Wolfrum, K. (2019). Ataluren for the Treatment of Usher Syndrome 2A Caused by Nonsense Mutations. International Journal of Molecular Sciences, 20(24), 6274. https://doi.org/10.3390/ijms20246274 Schilff, M., Sargsyan, Y., Hofhuis, J., & Thoms, S. (2021). Stop Codon Context-Specific Induction of Translational Readthrough. Biomolecules, 11(7), 1006. https://doi.org/10.3390/biom11071006 Scrivens, P. J., Noueihed, B., Shahrzad, N., Hul, S., Brunet, S., & Sacher, M. (2011). C4orf41 and TTC-15 are mammalian TRAPP components with a role at an early stage in ER-to-Golgi trafficking. Molecular Biology of the Cell, 22(12), 2083–2093. https://doi.org/10.1091/mbc.e10-11-0873 Stanga, D., Zhao, Q., Milev, M. P., Saint‐Dic, D., Jimenez‐Mallebrera, C., & Sacher, M. (2019). TRAPPC11 functions in autophagy by recruiting ATG2B‐WIPI4/WDR45 to preautophagosomal membranes. Traffic, 20(5), 325–345. https://doi.org/10.1111/tra.12640 Stephens, D. J., Lin-Marq, N., Pagano, A., Pepperkok, R., & Paccaud, J. P. (2000). COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. Journal of Cell Science, 113(12), 2177–2185. https://doi.org/10.1242/jcs.113.12.2177 Sutton, R. B., Fasshauer, D., Jahn, R., & Brunger, A. T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature, 395(6700), 347–353. https://doi.org/10.1038/26412 Tanida, I., Komatsu, M., Ueno, T., & Kominami, E. (2003). GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3. Biochemical and Biophysical Research Communications, 300(3), 637–644. https://doi.org/10.1016/S0006-291X(02)02907-8 Thomas, L. L., Joiner, A. M. N., & Fromme, J. C. (2018). The TRAPPIII complex activates the GTPase Ypt1 (Rab1) in the secretory pathway. Journal of Cell Biology, 217(1), 283–298. https://doi.org/10.1083/jcb.201705214 Velikkakath, A. K. G., Nishimura, T., Oita, E., Ishihara, N., & Mizushima, N. (2012). Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Molecular Biology of the Cell, 23(5), 896–909. https://doi.org/10.1091/mbc.e11-09-0785 Vössing, C., Owczarek-Lipska, M., Nagel-Wolfrum, K., Reiff, C., Jüschke, C., & Neidhardt, J. (2020). Translational Read-Through Therapy of RPGR Nonsense Mutations. International Journal of Molecular Sciences, 21(22), 8418. https://doi.org/10.3390/ijms21228418 Wang, T., Birsoy, K., Hughes, N. W., Krupczak, K. M., Post, Y., Wei, J. J., Lander, E. S., & Sabatini, D. M. (2015). Identification and characterization of essential genes in the human genome. Science, 350(6264), 1096–1101. https://doi.org/10.1126/science.aac7041 Welch, E. M., Barton, E. R., Zhuo, J., Tomizawa, Y., Friesen, W. J., Trifillis, P., Paushkin, S., Patel, M., Trotta, C. R., Hwang, S., Wilde, R. G., Karp, G., Takasugi, J., Chen, G., Jones, S., Ren, H., Moon, Y.-C., Corson, D., Turpoff, A. A., … Sweeney, H. L. (2007). PTC124 targets genetic disorders caused by nonsense mutations. Nature, 447(7140), 87–91. https://doi.org/10.1038/nature05756 Zhao, S., Li, C. M., Luo, X. M., Siu, G. K. Y., Gan, W. J., Zhang, L., Wu, W. K. K., Chan, H. C., & Yu, S. (2017). Mammalian TRAPPIII Complex positively modulates the recruitment of Sec13/31 onto COPII vesicles. Scientific Reports, 7(1), 43207. https://doi.org/10.1038/srep43207 Zheng, J.-X., Li, Y., Ding, Y.-H., Liu, J.-J., Zhang, M.-J., Dong, M.-Q., Wang, H.-W., & Yu, L. (2017). Architecture of the ATG2B-WDR45 complex and an aromatic Y/HF motif crucial for complex formation. Autophagy, 13(11), 1870–1883. https://doi.org/10.1080/15548627.2017.1359381