Two-dimensional numerical simulations are performed to investigate the effects of spatially discrete slot injection of reactants on the features of detonation wavelets in a rotating detonation engine (RDE). The detonation dynamics is described by a model based on the reactive Euler equations coupled with two-step, induction-reaction kinetics. By varying injection conditions and the chemical sensitivity of the reactive mixture, a parametric study is carried out to examine the influence of the injection-slot area ratio on the detonation wavelet patterns and different flow features inside an RDE combustion chamber. The simulation results demonstrate that the injection conditions, i.e., stagnation temperature and pressure, have a similar influence on slot-ozzle rotating detonation wavelets (RDWs) as compared with the mini-nozzle RDWs reported in a previous study. The corresponding mass flow rate and inhomogeneity generated due to the presence of slot injection, however, play a key factor in the self-sustained rotating detonation and its frontal structure.