[1] H. Kaouach, “Design and characterization of circularly polarized discrete lens antennas in 60-ghz band,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1200–1203, 2015. [2] B. Rahmati and H. Hassani, “High-efficient wideband slot transmitarray antenna,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 11, pp. 5149–5155, 2015. [3] A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmitarray antenna design using cross-slot elements with no dielectric substrate,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 177–180, 2014. [4] E. Hossain, M. Rasti, H. Tabassum, and A. Abdelnasser, “Evolution toward 5g multitier cellular wireless networks: An interference management perspective,” IEEE Wireless Communications, vol. 21, no. 3, pp. 118–127, 2014. [5] A. Gohil, H. Modi, and S. K. Patel, “5g technology of mobile communication: A survey,” in 2013 international conference on intelligent systems and signal processing (ISSP). IEEE, 2013, pp. 288–292. [6] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5g cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, 2013. [7] L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Magazine, vol. 4, no. 3, pp. 39–50, Sep. 2003. [8] E. Dahlman, S. Parkvall, D. Astély, and H. Tullberg, “Advanced antenna solutions for 5g wireless access,” in 2014 48th Asilomar Conference on Signals, Systems and Computers. IEEE, 2014, pp. 810–814. [9] M. O. Bagheri, H. R. Hassani, and B. Rahmati, “Dual-band, dual-polarised metallic slot transmitarray antenna,” IET Microwaves, Antennas & Propagation, vol. 11, no. 3, pp. 402–409, 2017. [10] A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “High-gain and broadband transmitarray antenna using triple-layer spiral dipole elements,” IEEE Antennas andWireless Propagation Letters, vol. 13, pp. 1288–1291, 2014. [11] B. Rahmati and H. Hassani, “High-efficient wideband slot transmitarray antenna,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 11, pp. 5149–5155, 2015. [12] H. Kaouach, “Design and characterization of circularly polarized discrete lens antennas in 60 ghz band,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1200–1203, 2015. [13] M. N. Jazi, M. R. Chaharmir, J. Shaker, and A. R. Sebak, “Broadband transmitarray antenna design using polarization-insensitive frequency selective surfaces,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 1, pp. 99–108, 2015. [14] C. Jouanlanne, A. Clemente, M. Huchard, J. Keignart, C. Barbier, T. Le Nadan, and L. Petit, “Wideband linearly polarized transmitarray antenna for 60 ghz backhauling,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 3, pp. 1440–1445, 2017. [15] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmwave) for 5g: opportunities and challenges,”Wireless networks, vol. 21, no. 8, pp. 2657–2676, 2015. 120 BIBLIOGRAPHY [16] D. Liu, L.Wang, Y. Chen, M. Elkashlan, K.-K.Wong, R. Schober, and L. Hanzo, “User association in 5g networks: A survey and an outlook,” IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1018–1044, 2016. [17] J. A. Madrid, “A geometrical approach to time evolving wave fronts,” Geophysical Journal International, vol. 172, no. 3, pp. 1117–1122, 2008. [18] P. Nayeri, F. Yang, and A. Z. Elsherbeni, System Design and Aperture Efficiency Analysis, 2018, pp. 49–78. [19] C. Fan, W. Che, W. Yang, and S. He, “A novel pramc-based ultralow-profile transmitarray antenna by using ray tracing principle,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1779–1787, 2017. [20] J. A. Encinar and J. A. Zornoza, “Broadband design of three-layer printed reflectarrays,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 7, pp. 1662–1664, 2003. [21] H. Nematollahi, J.-J. Laurin, J. Page, and J. A. Encinar, “Design of broadband transmitarray unit cells with comparative study of different numbers of layers,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1473–1481, 2015. [22] A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “High-gain and broadband transmitarray antenna using triple-layer spiral dipole elements,” IEEE Antennas andWireless Propagation Letters, vol. 13, pp. 1288–1291, 2014. [23] H. Kaouach, L. Dussopt, J. Lantéri, R. Sauleau, and T. Koleck, “Linear and circular polarization transmit-arrays in v-band,” in The 40th European Microwave Conference. IEEE, 2010, pp. 1536–1539. [24] K. Pham, N. T. Nguyen, A. Clemente, L. Di Palma, L. Le Coq, L. Dussopt, and R. Sauleau, “Design of wideband dual linearly polarized transmitarray antennas,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 5, pp. 2022–2026, 2016. [25] J. Huang and R. J. Pogorzelski, “A ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 5, pp. 650–656, 1998. [26] J. Huang, “Microstrip reflectarray,” IEEE INt. Symp on Antennas and Propagation, vol. 46, no. 5, pp. 612–615, 1991. [27] D. M. Pozar, S. D. Targonski, and R. Pokuls, “A shaped-beam microstrip patch reflectarray,” IEEE Transactions on Antennas and Propagation, vol. 47, no. 7, pp. 1167–1173, 1999. [28] S. Sakurai, J. G. N. Rahmeier, T. Tomura, J. Hirokawa, and S. Gupta, “Millimeterwave huygens’ transmit arrays based on coupled metallic resonators,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 5, pp. 2686–2696, 2020. [29] P. Mei, S. Zhang, and G. F. Pedersen, “A low-profile and beam-steerable transmitarray antenna: Design, fabrication, and measurement [antenna applications corner],” IEEE Antennas and Propagation Magazine, vol. 63, no. 5, pp. 88–101, 2021. [30] L.-Z. Song, P.-Y. Qin, and Y. J. Guo, “A high-efficiency conformal transmitarray antenna employing dual-layer ultrathin huygens element,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 2, pp. 848–858, 2020. [31] M. N. Jazi, M. R. Chaharmir, J. Shaker, and A. R. Sebak, “Broadband transmitarray antenna design using polarization-insensitive frequency selective surfaces,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 1, pp. 99–108, 2015. [32] T. Liu, M. Li, F. Yang, and S. Xu, “Phase error analysis for reflectarray antennas based on study of quasi-periodic effect,” in 2017 11th European Conference on Antennas and Propagation (EUCAP), 2017, pp. 3278–3281. [33] M.-A. Milon, D. Cadoret, R. Gillard, and H. Legay, “‘surrounded-element’approach for the simulation of reflectarray radiating cells,” IET Microwaves, Antennas & Propagation, vol. 1, no. 2, pp. 289–293, 2007. [34] M. A. Moharram and A. A. Kishk, “Optimum feeds for reflectarray antenna: synthesis and design,” IEEE transactions on antennas and propagation, vol. 64, no. 2, pp. 469–483, 2015. [35] W. L. Stutzman and G. A. Thiele, Antenna theory and design. John Wiley & Sons, 2012. [36] P. Nayeri, A. Z. Elsherbeni, and F. Yang, “Radiation analysis approaches for reflectarray antennas [antenna designer’s notebook],” IEEE Antennas and Propagation Magazine, vol. 55, no. 1, pp. 127–134, 2013. [37] F. Y. Payam Nayeri and A. Z. Elsherbeni., Reflectarray Antennas: Theory, Designs, and Applications, ser. Antenna Theory and Design. Wiley, 2018. [Online]. Available: https://books.google.ca/books?id=xhZRA1K57wIC [38] B. Y. Toh, R. Cahill, and V. F. Fusco, “Understanding and measuring circular polarization,” IEEE Transactions on Education, vol. 46, no. 3, pp. 313–318, 2003. [39] A. D. Nesic and D. A. Nesic, “Printed planar 8 × 8 array antenna with circular polarization for millimeter-wave application,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 744–747, 2012. [40] Q. Zhu, K. Ng, and C. H. Chan, “Printed circularly polarized spiral antenna array for millimeter-wave applications,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 2, pp. 636–643, 2017. [41] T. Manabe, K. Sato, H. Masuzawa, K. Taira, T. Ihara, Y. Kasashima, and K. Yamaki, “Polarization dependence of multipath propagation and high-speed transmission characteristics of indoor millimeter-wave channel at 60 ghz,” IEEE Transactions on Vehicular Technology, vol. 44, no. 2, pp. 268–274, 1995. [42] C.-L. Mak, K. Luk, K. Lee, and Y. Chow, “Experimental study of a microstrip patch antenna with an l-shaped probe,” IEEE Transactions on antennas and propagation, vol. 48, no. 5, pp. 777–783, 2000. [43] Y. Ge, K. P. Esselle, and T. S. Bird, “E-shaped patch antennas for high-speed wireless networks,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 12, pp. 3213–3219, 2004. [44] R. Chair, C.-L. Mak, K.-F. Lee, K.-M. Luk, and A. A. Kishk, “Miniature wide-band half u-slot and half e-shaped patch antennas,” IEEE transactions on antennas and propagation, vol. 53, no. 8, pp. 2645–2652, 2005. [45] Y. Wang, Y. Lu, G. Lu, W. Cao, and A. A. Kishk, “Broadband patch antenna with narrow width ground plane,” in 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2018, pp. 1735–1736. [46] Y. He, C. Li, and J. Yang, “A low-profile dual-polarized stacked patch antenna for micro-base-station applications,” in 2018 IEEE MTT-S International Wireless Symposium (IWS). IEEE, 2018, pp. 1–4. [47] F. Zhang, F.-S. Zhang, C. Lin, and G. Zhao, “Broadband microstrip patch antenna array using stacked structure,” in 2010 International Conference on Microwave and Millimeter Wave Technology. IEEE, 2010, pp. 388–391. [48] M. Asaadi and A. Sebak, “Gain and bandwidth enhancement of 2× 2 square dense dielectric patch antenna array using a holey superstrate,” IEEE Antennas andWireless Propagation Letters, vol. 16, pp. 1808–1811, 2017. [49] L. C. Paul, M. S. Hosain, S. Sarker, M. H. Prio, M. Morshed, and A. K. Sarkar, “The effect of changing substrate material and thickness on the performance of inset feed microstrip patch antenna,” American Journal of Networks and Communications, vol. 4, no. 3, pp. 54–58, 2015. [50] P. Katehi and N. Alexopoulos, “On the effect of substrate thickness and permittivity on printed circuit dipole properties,” IEEE Transactions on Antennas and Propagation, vol. 31, no. 1, pp. 34–39, 1983. [51] S. Bhardwaj and Y. Rahmat-Samii, “Revisiting the generation of cross-polarization in rectangular patch antennas: A near-field approach,” IEEE Antennas and Propagation Magazine, vol. 56, no. 1, pp. 14–38, 2014. [52] Z. Tong, A. Stelzer, and W. Menzel, “Improved expressions for calculating the impedance of differential feed rectangular microstrip patch antennas,” IEEE microwave and wireless components letters, vol. 22, no. 9, pp. 441–443, 2012. [53] Y. P. Zhang and J. J. Wang, “Theory and analysis of differentially-driven microstrip antennas,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 4, pp. 1092– 1099, 2006. [54] J.-D. Zhang, L. Zhu, Q.-S. Wu, N.-W. Liu, and W. Wu, “A compact microstrip-fed patch antenna with enhanced bandwidth and harmonic suppression,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 12, pp. 5030–5037, 2016. [55] N.-W. Liu, L. Zhu, W.-W. Choi, and X. Zhang, “A low-profile differential-fed patch antenna with bandwidth enhancement and sidelobe reduction under operation of tm 10 and tm 12 modes,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 9, pp. 4854–4859, 2018. [56] Z. Ahmed, M. M. Ahmed, and M. B. Ihsan, “A novel differential fed high gain patch antenna using resonant slot loading,” Radioengineering, vol. 27, no. 3, pp. 662–670,2018. [57] H. Jin, K.-S. Chin, W. Che, C.-C. Chang, H.-J. Li, and Q. Xue, “Differential-fed patch antenna arrays with low cross polarization and wide bandwidths,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1069–1072, 2014. [58] Q. Zhu, K. B. Ng, and C. H. Chan, “Complementary source based circularly polarized antenna arrays for millimeter-wave applications,” in 2014 IEEE International Workshop on Electromagnetics (iWEM). IEEE, 2014, pp. 260–261. 125 BIBLIOGRAPHY [59] M. Li and K.-M. Luk, “Low-cost wideband microstrip antenna array for 60-ghz applications,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, pp. 3012– 3018, 2014. [60] H. Sun, Y.-X. Guo, and Z. Wang, “60-ghz circularly polarized u-slot patch antenna array on ltcc,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 1, pp. 430– 435, 2012. [61] T.Wu, H. Su, L. Gan, H. Chen, J. Huang, and H. Zhang, “A compact and broadband microstrip stacked patch antenna with circular polarization for 2.45-ghz mobile rfid reader,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 623–626, 2013. [62] F.-J. Huang, T.-C. Yo, C.-M. Lee, and C.-H. Luo, “Design of circular polarization antenna with harmonic suppression for rectenna application,” IEEE Antennas andWireless Propagation Letters, vol. 11, pp. 592–595, 2012. [63] F. Diaby, A. Clemente, K. T. Pham, R. Sauleau, and L. Dussopt, “Circularly polarized transmitarray antennas at ka-band,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 7, pp. 1204–1208, 2018. [64] L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Circularly polarized transmitarray with sequential rotation in ka-band,” IEEE transactions on antennas and propagation, vol. 63, no. 11, pp. 5118–5124, 2015. [65] X. Zhong, L. Chen, Y. Shi, and X. Shi, “Design of multiple-polarization transmitarray antenna using rectangle ring slot elements,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1803–1806, 2016. [66] Y.-M. Cai, K. Li, W. Li, S. Gao, Y. Yin, L. Zhao, and W. Hu, “Dual-band circularly polarized transmitarray with single linearly polarized feed,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 6, pp. 5015–5020, 2020. [67] Z. H. Jiang, F.Wu, T. Yue, andW. Hong, “Wideband and low-profile integrated dualcircularly- polarized transmit-arrays enabled by antenna-filter-antenna phase shifting cells,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 11, pp. 7462– 7475, 2021. [68] C. Liu, A. Yan, C. Yu, and T. Xu, “Improvement on a 2× 2 elements high-gain circularly polarized antenna array,” International Journal of Antennas and Propagation, vol. 2015, 2015. [69] J. J. Pakan, “Antenna polarizer having two phase shifting medium,” Apr. 4 1961, uS Patent 2,978,702. [70] D. Lerner, “A wave polarization converter for circular polarization,” IEEE Transactions on Antennas and Propagation, vol. 13, no. 1, pp. 3–7, 1965. [71] A. d. C. Lima and E. A. Parker, “Fabry-perot approach to the design of double layer fss,” IEE Proceedings-Microwaves, Antennas and Propagation, vol. 143, no. 2, pp. 157– 162, 1996. [72] E. Arnieri, F. Greco, L. Boccia, and G. Amendola, “A wide-angle scanning polarization converter based on jerusalem-cross frequency selective surface,” in 2020 14th European Conference on Antennas and Propagation (EuCAP), 2020, pp. 1–5. [73] S. M. A. M. H. Abadi and N. Behdad, “Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 2, pp. 525–534, 2015. [74] M. Euler, V. Fusco, R. Dickie, R. Cahill, and J. Verheggen, “Sub-mm wet etched linear to circular polarization fss based polarization converters,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 8, pp. 3103–3106, 2011. [75] M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 ghz single layer sub-millimeter wave fss based split slot ring linear to circular polarization convertor,” IEEE Transactions on Antennas and propagation, vol. 58, no. 7, pp. 2457–2459, 2010. [76] M.-A. Joyal and J.-J. Laurin, “Analysis and design of thin circular polarizers based on meander lines,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 6, pp. 3007–3011, 2012. [77] P. Fei, Z. Shen, X. Wen, and F. Nian, “A single-layer circular polarizer based on hybrid meander line and loop configuration,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 10, pp. 4609–4614, 2015. [78] J. D. Baena, S. B. Glybovski, J. P. del Risco, A. P. Slobozhanyuk, and P. A. Belov, “Broadband and thin linear-to-circular polarizers based on self-complementary zigzag metasurfaces,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 8, pp. 4124–4133, 2017. [79] T. M. Hossain, H. Mirza, P. J. Soh, M. F. Jamlos, R. A. Sheikh, A. A. Al-Hadi, and P. Akkaraekthalin, “Broadband single-layered, single-sided flexible linear-to-circular polarizer using square loop array for s-band pico-satellites,” IEEE Access, vol. 7, pp. 149 262–149 272, 2019. [80] A. K. Fahad, C. Ruan, R. Nazir, M. Saleem, T. U. Haq, S. Ullah, and W. He, “Ultrathin metasheet for dual-wide-band linear to circular polarization conversion with wide-angle performance,” IEEE Access, vol. 8, pp. 163 244–163 254, 2020. [81] P. Naseri, S. A. Matos, J. R. Costa, C. A. Fernandes, and N. J. Fonseca, “Dual-band dual-linear-to-circular polarization converter in transmission mode application to k/ka-band satellite communications,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 12, pp. 7128–7137, 2018. [82] E. Erfani, T. Denidni, S. Tatu, and M. Niroo-Jazi, “A broadband and high gain millimeter-wave hybrid dielectric resonator antenna,” in 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 2016, pp. 1–2. [83] A. Elboushi and A. Sebak, “High-gain hybrid microstrip/conical horn antenna for mmw applications,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 129– 132, 2012. [84] Y. Ge, Z. Sun, Z. Chen, and Y.-Y. Chen, “A high-gain wideband low-profile fabry–perot resonator antenna with a conical short horn,” IEEE Antennas andWireless Propagation Letters, vol. 15, pp. 1889–1892, 2016. [85] Nasimuddin and K. P. Esselle, “A low-profile compact microwave antenna with high gain and wide bandwidth,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 6, pp. 1880–1883, 2007. [86] V. G. Kasabegoudar and K. Vinoy, “Coplanar capacitively coupled probe fed microstrip antennas for wideband applications,” IEEE Transactions On antennas and propagation, vol. 58, no. 10, pp. 3131–3138, 2010. [87] L. Inclan-Sanchez, J.-L. Vazquez-Roy, and E. Rajo-Iglesias, “Proximity coupled microstrip patch antenna with reduced harmonic radiation,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 1, pp. 27–32, 2009. [88] J. M. Gil, J. Monge, J. Rubio, and J. Zapata, “A cad-oriented method to analyze and design radiating structures based on bodies of revolution by using finite elements and generalized scattering matrix,” IEEE transactions on antennas and propagation, vol. 54, no. 3, pp. 899–907, 2006. [89] F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Transactions on microwave theory and techniques, vol. 53, no. 1, pp. 66–73, 2005. [90] K. Phalak and A. Sebak, “Surface integrated waveguide based triangular cavity backed t slot planar antenna at 60 ghz,” in 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, 2014, pp. 1495–1496. [91] M. Alzidani, I. Afifi, M. Asaadi, and A. Sebak, “Ultra-wideband differential fed hybrid antenna with high-cross polarization discrimination for millimeter wave applications,” IEEE Access, vol. 8, pp. 80 673–80 683, 2020. [92] F. Hyjazie and R. Paknys, “On the radiation from a large, open-ended waveguide,” IEEE Antennas and Propagation Magazine, vol. 44, no. 6, pp. 98–100, 2002.