1. Lewis, A. Making Composite Repairs to the 787. Aero Quarterly, 05–14. https:// www.boeing.com/commercial/aeromagazine/articles/2015_q1/archive.html (2014). 2. Hale, J. Boeing 787 from the Ground Up. Aero Quarterly, 17–24. https : / / www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/index.html (2006). 3. Hyer, M. W. Stress Analysis of Fiber-reinforced Composite Materials 718 pp. (DEStech Publications, Inc, 2009). 4. Setoodeh, S., Gürdal, Z. & Watson, L. T. Design of variable-stiffness composite layers using cellular automata. Computer Methods in Applied Mechanics and Engi- neering 195, 836–851. http://www.sciencedirect.com/science/article/pii/ S0045782505001325 (Feb. 1, 2006). 5. Gürdal, Z., Tatting, B. F. & Wu, C. K. Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response. Composites Part A: Applied Science and Manufacturing 39, 911–922. http : / / www . sciencedirect . com/science/article/pii/S1359835X07002643 (May 1, 2008). 6. Lopes, C. S., Gürdal, Z. & Camanho, P. P. Variable-stiffness composite panels: Buck- ling and first-ply failure improvements over straight-fibre laminates. Computers & Structures. Composites 86, 897–907. http://www.sciencedirect.com/science/ article/pii/S0045794907001654 (May 1, 2008). 7. Rouhi, M., Ghayoor, H., Hoa, S. V., Hojjati, M. & Weaver, P. M. Stiffness tailoring of elliptical composite cylinders for axial buckling performance. Composite Struc- tures 150, 115–123. http://www.sciencedirect.com/science/article/pii/ S0263822316304639 (Aug. 15, 2016). 8. Wu, K. et al. Design and Manufacturing of Tow-Steered Composite Shells Using Fiber Placement in 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy- namics, and Materials Conference 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (American Institute of Aeronautics and Astronautics, Palm Springs, California, May 4, 2009). http://arc.aiaa.org/ doi/10.2514/6.2009-2700. 9. Clancy, G. et al. A study of the influence of processing parameters on steering of carbon Fibre/PEEK tapes using laser-assisted tape placement. Composites Part B: Engineering 163, 243–251. https://linkinghub.elsevier.com/retrieve/pii/ S135983681832300X (Apr. 2019). 10. Blom, A. W. Structural Performance of Fiber-Placed, Variable-Stiffness Composite Conical and Cylindrical Shells PhD thesis (2010). https://repository.tudelft. nl/islandora/object/uuid%3A46f2e44b-1a68-44f8-9633-79490a54e087. 11. Marouene, A., Boukhili, R., Chen, J. & Yousefpour, A. Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite lam- inates – A numerical and experimental study. Composite Structures 140, 556–566. https://www.sciencedirect.com/science/article/pii/S0263822316000258 (Apr. 15, 2016). 12. Croft, K. et al. Experimental study of the effect of automated fiber placement in- duced defects on performance of composite laminates. Composites Part A: Applied Science and Manufacturing 42, 484–491. https : / / www . sciencedirect . com / science/article/pii/S1359835X11000224 (May 1, 2011). 13. Woigk, W. et al. Experimental investigation of the effect of defects in Automated Fibre Placement produced composite laminates. Composite Structures 201, 1004–1017. https://www.sciencedirect.com/science/article/pii/S0263822317339946 (Oct. 1, 2018). 14. Bakhshi, N. & Hojjati, M. An experimental and simulative study on the defects appeared during tow steering in automated fiber placement. Composites Part A: Applied Science and Manufacturing 113, 122–131. https://www.sciencedirect. com/science/article/pii/S1359835X1830280X (Oct. 1, 2018). 15. Peeters, D. M. J. Design Optimisation of Practical Variable Stiffness and Thickness Laminates PhD thesis (2017). https : / / repository . tudelft . nl / islandora / object/uuid%3Aa07ea6a4-be73-42a6-89b5-e92d99bb6256. 16. Lamontia, M. A. et al. Manufacturing flat and cylindrical laminates and built up structure using automated thermoplastic tape laying, fiber placement, and filament winding. Sampe Journal 39, 30–43 (2003). 17. Timoshenko, S. P. & Gere, J. M. Theory of Elastic Stability 562 pp. (Courier Cor- poration, June 22, 2009). 18. Hoa, S. V. Principles of the manufacturing of composite materials Second edition. 437 pp. (DEStech Publications, Inc, Lancaster, Pennsylvania, 2018). 19. MTorres. Automatic taping machine - TORRESLAYUP https : / / mtorres . es / en / equipment / manufacturing - systems / lamination / automatic - wrapping - machine-torreslayup. 20. MTorres. Automatic Fiberplacement Machine - TORRESFIBERLAYUP https:// mtorres.es/en/equipment/manufacturing- systems/lamination/automatic- machine-of-fiberplacement-torresfiberlayup. 21. Moddeman, W. E., Bowling, W. C., Tibbitts, E. E. & Whitaker, R. B. Ther- mal stability and compatibility of polyetheretherketone (PEEK) with an oxidizer and pyrotechnic blend. Polymer Engineering & Science 26, 1469–1477. https : //onlinelibrary.wiley.com/doi/abs/10.1002/pen.760262102 (1986). 22. Day, M., Cooney, J. D. & Wiles, D. M. The thermal stability of poly(aryl-ether–ether- ketone) as assessed by thermogravimetry. Journal of Applied Polymer Science 38, 323–337. https : / / onlinelibrary .wiley .com/ doi/ abs / 10 .1002 / app. 1989 . 070380214 (1989). 23. Cai, X. Determination of Process Parameters for the Manufacturing of Thermoplas- tic Composite Cones Using Automated Fiber Placement masters (Concordia Uni- versity, June 18, 2012). 105 pp. https://spectrum.library.concordia.ca/id/ eprint/974158/. 24. Zacchia, T. T., Shadmehri, F., Fortin-Simpson, J. & Hoa, S. V. Design Of Hard Compaction Rollers For Automated Fiber Placement On Complex Mandrel Geome- tries. https://yorkspace.library.yorku.ca/xmlui/handle/10315/35245. 25. IJsselmuiden, S. T. Optimal Design of Variable Stiffness Composite Structures using Lamination Parameters PhD thesis (2011). https://repository.tudelft.nl/ islandora/object/uuid%3A973a564b-5734-42c4-a67c-1044f1e25f1c. 26. Weaver, P., Potter, K., Hazra, K., Saverymuthapulle, M. & Hawthorne, M. Buckling of Variable Angle Tow Plates: From Concept to Experiment in 50th AIAA/AS- ME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Mate- rials Conference (American Institute of Aeronautics and Astronautics, Palm Springs, California, May 4, 2009). http://arc.aiaa.org/doi/10.2514/6.2009-2509. 27. Bakhshi, N. Process-Induced Defects during Tow Steering in Automated Fiber Place- ment: Experiment, Modeling and Simulation masters (Concordia University, Nov. 27, 2018). 153 pp. https://spectrum.library.concordia.ca/984730/. 28. Rajan, G. & Prusty, B. G. Structural Health Monitoring of Composite Structures Using Fiber Optic Methods 508 pp. (CRC Press, Oct. 3, 2016). 29. Kim, B. C., Hazra, K., Weaver, P. & Potter, K. Limitations of fibre placement tech- niques for variable angle tow composites and their process-induced defects in Pro-ceedings of the 18th International Conference on Composite Materials (ICMM18), Jeju, Korea (2011), 21–26. 30. Kim, B. C., Potter, K. & Weaver, P. M. Continuous tow shearing for manufacturing variable angle tow composites. Composites Part A: Applied Science and Manufac- turing 43, 1347–1356. http://www.sciencedirect.com/science/article/pii/ S1359835X12000929 (Aug. 1, 2012). 31. Stokes-Griffin, C. A combined optical-thermal model for laser-assisted fibre placement of thermoplastic composite materials PhD thesis (2015). https://openresearch- repository.anu.edu.au/handle/1885/150750. 32. Mechanical testing of advanced fibre composites (ed Hodgkinson, J. M.) (CRC Press ; Woodhead, Boca Raton, FL : Cambridge, England, 2000). 362 pp. 33. ASTM D30 Committee. Test Method for Mixed Mode I-Mode II Interlaminar Frac- ture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites (ASTM International). http://www.astm.org/cgi-bin/resolver.cgi?D6671D6671M-19. 34. ASTM D30 Committee. Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites (ASTM International). http://www.astm.org/cgi-bin/resolver.cgi?D5528-13. 35. Bhashyam, S. & Davidson, B. D. Evaluation of Data Reduction Methods. AIAA Journal 35, 546–552. https://doi.org/10.2514/2.129 (1997). 36. RUSSEL, A. J. Factors Affecting the Interlaminar Fracture Energy of Graphite/E- poxy Laminates. Proc. 4th Int. Conf. on Composite Materials, 279–286. https : //ci.nii.ac.jp/naid/10007205992/ (1982). 37. Nicholls, D. & Gallagher, J. Determination of GIC in Angle Ply Composites Using a Cantilever Beam Test Method. Journal of Reinforced Plastics and Composites 2, 2–17. https://doi.org/10.1177/073168448300200101 (Jan. 1, 1983). 38. Chai, H. The characterization of Mode I delamination failure in non-woven, multidi- rectional laminates. Composites 15, 277–290. https://www.sciencedirect.com/ science/article/pii/0010436184907080 (Oct. 1, 1984). 39. Bradley, W. L., Corleto, C. R. & Goetz, D. P. Fracture Physics of Delamination of Composite Materials. (Texas A&M University, college station mechanics and mate- rials center, Oct. 1, 1987). https://apps.dtic.mil/sti/citations/ADA192021. 40. Laksimi, A., Benzeggagh, M. L., Jing, G., Hecini, M. & Roelandt, J. M. Mode I interlaminar fracture of symmetrical cross-ply composites. Composites Science and Technology 41, 147–164. https://www.sciencedirect.com/science/article/ pii/026635389190025K (Jan. 1, 1991). 41. Robinson, P. & Song, D. A Modified DCB Specimen for Mode I Testing of Mul- tidirectional Laminates. Journal of Composite Materials 26, 1554–1577. https : //doi.org/10.1177/002199839202601101 (Nov. 1, 1992). 42. Foster, S., Robinson, P. & Hodgkinson, J. Interlaminar fracture toughness testing of 0/θ interfaces in carbon-epoxy laminates using edge delamination strategy. Plastics rubber and composites processing and applications 26, 430–437 (1997). 43. Hiley, M. J. in European Structural Integrity Society (eds Williams, J. G. & Pavan, A.) 61–72 (Elsevier, Jan. 1, 2000). https://www.sciencedirect.com/science/ article/pii/S1566136900800084. 44. Kim, B. W. & Mayer, A. H. Influence of fiber direction and mixed-mode ratio on delamination fracture toughness of carbon/epoxy laminates. Composites Science and Technology 63, 695–713. http://www.sciencedirect.com/science/article/ pii/S0266353802002580 (Apr. 1, 2003). 45. Delamination behaviour of composites (ed Sridharan, S.) (Woodhead Pub, Cam- bridge, 2008). 1 p. 46. De Gracia, J., Boyano, A., Arrese, A. & Mujika, F. Analysis of DCB test of angle-ply laminates including bending-twisting coupling. Composite Structures 190, 169–178. http: / / www . sciencedirect . com/science/article/pii/S026382231733622X (Apr. 15, 2018). 47. Belhaj, M. M. Theoretical and Experimental Investigation of out-of-plane Wrinkle Formation during Steering in Automated Fiber Placement PhD thesis (Concordia University, Nov. 23, 2020). 112 pp. https://spectrum.library.concordia.ca/ id/eprint/987975/. 48. De Freitas, S. T. & Sinke, J. Test method to assess interface adhesion in composite bonding. Applied Adhesion Science 3, 9. https://doi.org/10.1186/s40563-015- 0033-5 (Mar. 24, 2015). 49. ASTM D14 Committee. Test Method for 90 Degree Peel Resistance of Adhesives (ASTM International). http://www.astm.org/cgi-bin/resolver.cgi?D6862- 11R16. 50. ASTM D14 Committee. Test Method for Peel Resistance of Adhesives (T-Peel Test) (ASTM International). http://www.astm.org/cgi-bin/resolver.cgi?D1876- 08R15E1. 51. ASTM D14 Committee. Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding (ASTM International). http://www.astm.org/cgi-bin/ resolver.cgi?D5868-01R14. 52. Imada. 90 Degree Peel Tester - Imada Inc. https://imada.com/products/90- degree-peel-tester/. 53. De Freitas, S. T. & Sinke, J. Adhesion Properties of Bonded Composite-to-Aluminium Joints Using Peel Tests. The Journal of Adhesion 90, 511–525. https://doi.org/ 10.1080/00218464.2013.850424 (June 3, 2014). 54. Hulcher, A. B., Marchello, J. M. & Hinkley, J. A. Wedge peel testing for Automated fiber placement. Wedge peel testing for Automated fiber placement 31, 37–43 (1999). 55. Comer, A. et al. Wedge peel interlaminar toughness of Carbon-Fibre/PEEK thermo- plastic laminates manufactured by laser-assisted automated-tape-placement (LATP). http://rgdoi.net/10.13140/2.1.1305.9847 (2014). 56. Khan, M. A. Experimental and Simulative Description of the Thermoplastic Tape Placement Process with Online Consolidation. https://kluedo.ub.uni-kl.de/ frontdoor/index/index/docId/4729 (2010). 57. International, A. ASTM D2344-16: Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials (ASTM, 2016). 58. D3846-02, A. s. Standard Test Method for In-Plane Shear Strength of Reinforced Plastics (ASTM West Conshohocken, PA., 2002). 59. Qureshi, Z., Swait, T., Scaife, R. & El-Dessouky, H. M. In situ consolidation of thermoplastic prepreg tape using automated tape placement technology: Poten- tial and possibilities. Composites Part B: Engineering 66, 255–267. http://www. sciencedirect.com/science/article/pii/S1359836814002388 (Nov. 1, 2014). 60. Rajasekaran, A. & Shadmehri, F. Steering of carbon fiber/PEEK tapes using Hot Gas Torch-assisted automated fiber placement. Journal of Thermoplastic Composite Materials, 08927057211067962. https://doi.org/10.1177/08927057211067962 (Feb. 14, 2022). 61. Shadmehri, F., Hoa, S. V., Fortin-Simpson, J. & Ghayoor, H. Effect of in situ treat- ment on the quality of flat thermoplastic composite plates made by automated fiber placement (AFP). Advanced Manufacturing: Polymer & Composites Science 4, 41– 47. https://doi.org/10.1080/20550340.2018.1444535 (Apr. 3, 2018). 62. Hoang, M. D. Procedure for making flat thermoplastic composite plates by Automated Fiber Placement and their mechanical properties masters (Concordia University, Apr. 2015). 82 pp. https://spectrum.library.concordia.ca/979994/. 63. Aghababaei Tafreshi, O. Heat Transfer Study of the In-situ Automated Fiber Place- ment (AFP) for Thermoplastic Composites masters (Concordia University, Dec. 1, 2019). 146 pp. https://spectrum.library.concordia.ca/id/eprint/986269/. 64. Rajasekaran, A. & Shadmehri, F. Modified Lap Shear Test for Automated Fiber Placement (AFP) of Steered Thermoplastic Composite Tape. Proceedings of theAmerican Society for Composites — Thirty-fifth Technical Conference 0. https: //www.dpi-proceedings.com/index.php/asc35/article/view/34869 (2020). 65. Lawal, A. & Kalyon, D. M. Squeezing flow of viscoplastic fluids subject to wall slip. Polymer Engineering & Science 38, 1793–1804 (1998). 66. Grefe, H., Kandula, M. W. & Dilger, K. Influence of the fibre orientation on the lap shear strength and fracture behaviour of adhesively bonded composite metal joints at high strain rates. International Journal of Adhesion and Adhesives. Special issue on Joint design 97, 102486. https://www.sciencedirect.com/science/ article/pii/S0143749619302350 (Mar. 1, 2020). 67. Dow, N. F. & Rosen, B. W. Evaluations of Filament-Reinforced Composites for Aerospace Structural Applications. (GENERAL ELECTRIC CO PHILADELPHIA PA, 1965). 68. Campbell, D., Mallick, K. & Lake, M. in 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference (American Institute of Aeronautics and Astronautics). https : / / arc . aiaa . org / doi / abs / 10 . 2514 / 6.2004-1636. 69. Wang, Z. D., Li, Z. F. & Wang, Y. S. Microbuckling Solution of Elastic Memory Laminates under Bending: Journal of Intelligent Material Systems and Structures. https://journals- sagepub- com.lib- ezproxy.concordia.ca/doi/10.1177/ 1045389X09102558 (June 12, 2009). 70. Timoshenko, S. 1.-1. Strength of materials Third edition. (D. Van Nostrand Com- pany, New York, 1955). 71. Cogswell, F. N. Thermoplastic Aromatic Polymer Composites: A Study of the Struc- ture, Processing and Properties of Carbon Fibre Reinforced Polyetheretherketone and Related Materials 288 pp. (Elsevier, Oct. 22, 2013).