Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2018, 68 (6), 394–424. https://doi.org/10.3322/caac.21492. (2) Canadian Cancer Statistics. Cancer Statistics at a Glance - Canadian Cancer Society. Can. Cancer Soc. 2016, No. January 2018, 4–7. (3) PDQ Adult Treatment Editorial Board. Non-Small Cell Lung Cancer Treatment (PDQ®): Patient Version; 2002. (4) PDQ Adult Treatment Editorial Board. Small Cell Lung Cancer Treatment (PDQ®): Patient Version. PDQ Cancer Inf. Summ. 2002. (5) Yamaoka, T. Understanding the EGFR Mutation Aids the Fight against Lung Cancer. Res. Outreach 2020, No. 114, 50–53. https://doi.org/10.32907/RO-114-5053. (6) Park, K. S.; Liang, M. C.; Raiser, D. M.; Zamponi, R.; Roach, R. R.; Curtis, S. J.; Walton, Z.; Schaffer, B. E.; Roake, C. M.; Zmoos, A. F.; Kriegel, C.; Wong, K. K.; Sage, J.; Kim, C. F. Characterization of the Cell of Origin for Small Cell Lung Cancer. Cell Cycle 2011, 10 (16), 2806–2815. https://doi.org/10.4161/cc.10.16.17012. (7) Healthline. Types of Non-Small Cell Lung Cancer: Causes, Treatment, and Outlook https://www.healthline.com/health/lung-cancer/types-of-non-small-cell-lung-cancer#types (accessed Feb 5, 2023). (8) Dela Cruz, C. S.; Tanoue, L. T.; Matthay, R. A. Lung Cancer: Epidemiology, Etiology, and Prevention. Clinics in Chest Medicine. December 2011, pp 605–644. https://doi.org/10.1016/j.ccm.2011.09.001. (9) Rami-Porta, R.; Goldstraw, P.; Pass, H. I. The Eighth Edition of the Tumor, Node, and Metastasis Classification of Lung Cancer. In IASLC Thoracic Oncology; Elsevier, 2018; pp 253-264.e1. https://doi.org/10.1016/B978-0-323-52357-8.00025-1. (10) Giard, D. J.; Aaronson, S. A.; Todaro, G. J.; Arnstein, P.; Kersey, J. H.; Dosik, H.; Parks, W. P. In Vitro Cultivation of Human Tumors: Establishment of Cell Lines Derived from a Series of Solid Tumors. J. Natl. Cancer Inst. 1973, 51 (5), 1417–1423. 89 https://doi.org/10.1093/jnci/51.5.1417. (11) Franklin, M. A549 - A Model for Non-Small Cell Lung Cancer - MI Bioresearch. MI Bioresearch Inc 2016, No. 734, 1–7. (12) Korrodi-Gregório, L.; Soto-Cerrato, V.; Vitorino, R.; Fardilha, M.; Pérez-Tomás, R. From Proteomic Analysis to Potential Therapeutic Targets: Functional Profile of Two Lung Cancer Cell Lines, A549 and SW900, Widely Studied in Pre-Clinical Research. PLoS One 2016, 11 (11), e0165973. https://doi.org/10.1371/journal.pone.0165973. (13) www.atcc.org. A549 - CCL-185 | ATCC https://www.atcc.org/products/ccl-185 (accessed Feb 22, 2023). (14) Ellis, P. M.; Vandermeer, R. Delays in the Diagnosis of Lung Cancer. J. Thorac. Dis. 2011, 3 (3), 183–188. https://doi.org/10.3978/j.issn.2072-1439.2011.01.01. (15) Ay Eren, A.; Eren, M. F.; Koca, S. The Effect of Thoracic Radiotherapy on the Quality of Life in Lung Cancer Patients. Cureus 2021, 13 (3), e13870. https://doi.org/10.7759/cureus.13870. (16) Bouleftour, W.; Rowinski, E.; Louati, S.; Sotton, S.; Wozny, A.-S.; Moreno-Acosta, P.; Mery, B.; Rodriguez-Lafrasse, C.; Magne, N. A Review of the Role of Hypoxia in Radioresistance in Cancer Therapy. Med. Sci. Monit. 2021, 27, 1–7. https://doi.org/10.12659/MSM.934116. (17) Castedo, M.; Perfettini, J. L.; Roumier, T.; Andreau, K.; Medema, R.; Kroemer, G. Cell Death by Mitotic Catastrophe: A Molecular Definition. Oncogene. 2004, pp 2825–2837. https://doi.org/10.1038/sj.onc.1207528. (18) Kepka, L.; Socha, J. Dose and Fractionation Schedules in Radiotherapy for Non-Small Cell Lung Cancer. Transl. Lung Cancer Res. 2021, 10 (4), 1969–1982. https://doi.org/10.21037/tlcr-20-253. (19) Chan, C.; Lang, S.; Rowbottom, C.; Guckenberger, M.; Faivre-Finn, C. Intensity-Modulated Radiotherapy for Lung Cancer: Current Status and Future Developments. J. Thorac. Oncol. 2014, 9 (11), 1598–1608. https://doi.org/10.1097/JTO.0000000000000346. (20) Sebastian, N. T.; Xu-Welliver, M.; Williams, T. M. Stereotactic Body Radiation Therapy 90 (SBRT) for Early Stage Non-Small Cell Lung Cancer (NSCLC): Contemporary Insights and Advances. J. Thorac. Dis. 2018, 10 (S21), S2451–S2464. https://doi.org/10.21037/jtd.2018.04.52. (21) Parashar, B.; Arora, S.; Wernicke, A. Radiation Therapy for Early Stage Lung Cancer. Semin. Intervent. Radiol. 2013, 30 (02), 185–190. https://doi.org/10.1055/s-0033-1342960. (22) Césaire, M.; Montanari, J.; Curcio, H.; Lerouge, D.; Gervais, R.; Demontrond, P.; Balosso, J.; Chevalier, F. Radioresistance of Non-Small Cell Lung Cancers and Therapeutic Perspectives. Cancers (Basel). 2022, 14 (12), 2829. https://doi.org/10.3390/cancers14122829. (23) Maréchal, A.; Zou, L. DNA Damage Sensing by the ATM and ATR Kinases. Cold Spring Harb. Perspect. Biol. 2013, 5 (9), 1–18. https://doi.org/10.1101/cshperspect.a012716. (24) Chatterjee, N.; Walker, G. C. Mechanisms of DNA Damage, Repair, and Mutagenesis. Environ. Mol. Mutagen. 2017, 58 (5), 235–263. https://doi.org/10.1002/em.22087. (25) Huang, R. X.; Zhou, P. K. DNA Damage Response Signaling Pathways and Targets for Radiotherapy Sensitization in Cancer. Signal Transduct. Target. Ther. 2020, 5 (1). https://doi.org/10.1038/s41392-020-0150-x. (26) Binkley, M. S.; Jeon, Y.-J.; Nesselbush, M.; Moding, E. J.; Nabet, B. Y.; Almanza, D.; Kunder, C.; Stehr, H.; Yoo, C. H.; Rhee, S.; Xiang, M.; Chabon, J. J.; Hamilton, E.; Kurtz, D. M.; Gojenola, L.; Owen, S. G.; Ko, R. B.; Shin, J. H.; Maxim, P. G.; Lui, N. S.; Backhus, L. M.; Berry, M. F.; Shrager, J. B.; Ramchandran, K. J.; Padda, S. K.; Das, M.; Neal, J. W.; Wakelee, H. A.; Alizadeh, A. A.; Loo, B. W.; Diehn, M. KEAP1/NFE2L2 Mutations Predict Lung Cancer Radiation Resistance That Can Be Targeted by Glutaminase Inhibition. Cancer Discov. 2020, 10 (12), 1826–1841. https://doi.org/10.1158/2159-8290.CD-20-0282. (27) Cancer research UK. Side Effects of Lung Cancer Radiotherapy | Cancer Research UK. 2016. (28) Liu, Y.; Zhang, P.; Li, F.; Jin, X.; Li, J.; Chen, W.; Li, Q. Metal-Based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics 2018, 8 (7), 1824–1849. https://doi.org/10.7150/thno.22172. 91 (29) Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S. Application of Radiosensitizers in Cancer Radiotherapy. International Journal of Nanomedicine. 2021, pp 1083–1102. https://doi.org/10.2147/IJN.S290438. (30) Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S. Application of Radiosensitizers in Cancer Radiotherapy. International Journal of Nanomedicine. Dove Press 2021, pp 1083–1102. https://doi.org/10.2147/IJN.S290438. (31) Klein, J. S.; Sun, C.; Pratx, G. Radioluminescence in Biomedicine: Physics, Applications, and Models. Phys. Med. Biol. 2019, 64 (4), 04TR01. https://doi.org/10.1088/1361-6560/aaf4de. (32) Verry, C.; Dufort, S.; Villa, J.; Gavard, M.; Iriart, C.; Grand, S.; Charles, J.; Chovelon, B.; Cracowski, J.-L.; Quesada, J.-L.; Mendoza, C.; Sancey, L.; Lehmann, A.; Jover, F.; Giraud, J.-Y.; Lux, F.; Crémillieux, Y.; McMahon, S.; Pauwels, P. J.; Cagney, D.; Berbeco, R.; Aizer, A.; Deutsch, E.; Loeffler, M.; Le Duc, G.; Tillement, O.; Balosso, J. Theranostic AGuIX Nanoparticles as Radiosensitizer: A Phase I, Dose-Escalation Study in Patients with Multiple Brain Metastases (NANO-RAD Trial). Radiother. Oncol. 2021, 160, 159–165. https://doi.org/10.1016/j.radonc.2021.04.021. (33) Leeman, J. Nano-SMART: nanoparticles With MR Guided SBRT in NSCLC and Pancreatic Cancer https://clinicaltrials.gov/ct2/show/NCT04789486?term=AGuIX&draw=2&rank=6 (accessed Feb 23, 2023). (34) Baptista, M. S.; Cadet, J.; Di Mascio, P.; Ghogare, A. A.; Greer, A.; Hamblin, M. R.; Lorente, C.; Nunez, S. C.; Ribeiro, M. S.; Thomas, A. H.; Vignoni, M.; Yoshimura, T. M. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochemistry and Photobiology. John Wiley & Sons, Ltd July 1, 2017, pp 912–919. https://doi.org/10.1111/php.12716. (35) Abrahamse, H.; Hamblin, M. R. New Photosensitizers for Photodynamic Therapy. Biochem. J. 2016, 473 (4), 347–364. https://doi.org/10.1042/BJ20150942. (36) Nsubuga, A.; Mandl, G. A.; Capobianco, J. A. Investigating the Reactive Oxygen Species Production of Rose Bengal and Merocyanine 540-Loaded Radioluminescent Nanoparticles. 92 Nanoscale Adv. 2021, 3 (5), 1375–1381. https://doi.org/10.1039/d0na00964d. (37) Dayem, A. A.; Hossain, M. K.; Lee, S. Bin; Kim, K.; Saha, S. K.; Yang, G. M.; Choi, H. Y.; Cho, S. G. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. International Journal of Molecular Sciences. MDPI AG January 10, 2017. https://doi.org/10.3390/ijms18010120. (38) SPILLER, W.; KLIESCH, H.; WÖHRLE, D.; HACKBARTH, S.; RÖDER, B.; SCHNURPFEIL, G. Singlet Oxygen Quantum Yields of Different Photosensitizers in Polar Solvents and Micellar Solutions. J. Porphyr. Phthalocyanines 1998, 02 (02), 145–158. https://doi.org/10.1002/(SICI)1099-1409(199803/04)2:2<145::AID-JPP60>3.0.CO;2-2. (39) Quina, F. H.; Silva, G. T. M. The Photophysics of Photosensitization: A Brief Overview. J. Photochem. Photobiol. 2021, 7 (April), 100042. https://doi.org/10.1016/j.jpap.2021.100042. (40) Lambert, C. R.; Kochevar, I. E. Electron Transfer Quenching of the Rose Bengal Triplet State. Photochem. Photobiol. 1997, 66 (1), 15–25. https://doi.org/10.1111/j.1751-1097.1997.tb03133.x. (41) Vanerio, N.; Stijnen, M.; de Mol, B. A. J. M.; Kock, L. M. Biomedical Applications of Photo- and Sono-Activated Rose Bengal: A Review. Photobiomodulation, Photomedicine, Laser Surg. 2019, 37 (7), 383–394. https://doi.org/10.1089/photob.2018.4604. (42) Simone, C. B.; Friedberg, J. S.; Glatstein, E.; Stevenson, J. P.; Sterman, D. H.; Hahn, S. M.; Cengel, K. A. Photodynamic Therapy for the Treatment of Non-Small Cell Lung Cancer. J. Thorac. Dis. 2012, 4 (1), 63–75. https://doi.org/10.3978/ j.issn.2072-1439.2011.11.05. (43) Correia, J. H.; Rodrigues, J. A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13 (9), 1332. https://doi.org/10.3390/pharmaceutics13091332. (44) Collins, S. R. Elsevier’s 2022 Intravenous Medications - E-Book: A Handbook for Nurses and Health Professionals; Elsevier Health Sciences, 2021. (45) Ruggiero, E.; Alonso-De Castro, S.; Habtemariam, A.; Salassa, L. Upconverting Nanoparticles for the near Infrared Photoactivation of Transition Metal Complexes: New Opportunities and Challenges in Medicinal Inorganic Photochemistry. Dalt. Trans. 2016, 93 45 (33), 13012–13020. https://doi.org/10.1039/c6dt01428c. (46) Borgia, F.; Giuffrida, R.; Caradonna, E.; Vaccaro, M.; Guarneri, F.; Cannavò, S. Early and Late Onset Side Effects of Photodynamic Therapy. Biomedicines 2018, 6 (1), 12. https://doi.org/10.3390/biomedicines6010012. (47) Dhaini, B.; Wagner, L.; Moinard, M.; Daouk, J.; Arnoux, P.; Schohn, H.; Schneller, P.; Acherar, S.; Hamieh, T.; Frochot, C. Importance of Rose Bengal Loaded with Nanoparticles for Anti-Cancer Photodynamic Therapy. Pharmaceuticals 2022, 15 (9). https://doi.org/10.3390/ph15091093. (48) Yi, G.; Hong, S. H.; Son, J.; Yoo, J.; Park, C.; Choi, Y.; Koo, H. Recent Advances in Nanoparticle Carriers for Photodynamic Therapy. Quant. Imaging Med. Surg. 2018, 8 (4), 433–443. https://doi.org/10.21037/qims.2018.05.04. (49) Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in Photodynamic Therapy. Chem. Rev. 2015, 115 (4), 1990–2042. https://doi.org/10.1021/cr5004198. (50) Larue, L.; Ben Mihoub, A.; Youssef, Z.; Colombeau, L.; Acherar, S.; André, J. C.; Arnoux, P.; Baros, F.; Vermandel, M.; Frochot, C. Using X-Rays in Photodynamic Therapy: An Overview. Photochem. Photobiol. Sci. 2018, 17 (11), 1612–1650. https://doi.org/10.1039/c8pp00112j. (51) Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic Therapy – Mechanisms, Photosensitizers and Combinations. Biomedicine and Pharmacotherapy. Elsevier Masson October 1, 2018, pp 1098–1107. https://doi.org/10.1016/j.biopha.2018.07.049. (52) Sabri, T.; Pawelek, P. D.; Capobianco, J. A. Dual Activity of Rose Bengal Functionalized to Albumin-Coated Lanthanide-Doped Upconverting Nanoparticles: Targeting and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2018, 10 (32), 26947–26953. https://doi.org/10.1021/acsami.8b08919. (53) Bünzli, J. C. G. Lanthanide Luminescence for Biomedical Analyses and Imaging. Chem. Rev. 2010, 110 (5), 2729–2755. https://doi.org/10.1021/cr900362e. (54) Wells, W. H.; Wells, V. L. The Lanthanides, Rare Earth Elements. In Patty’s Toxicology; 94 John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp 817–840. https://doi.org/10.1002/0471435139.tox043.pub2. (55) Bünzli, J.-C. G.; Eliseeva, S. V. Basics of Lanthanide Photophysics. In Springer Series on Fluorescence, Vol. 7; 2010; Vol. 7, pp 1–45. https://doi.org/10.1007/4243_2010_3. (56) Zhou, M.; Li, Y.; Chang, Q.; Sun, Q.; Su, Q. Upconversion Nanoparticles for the Future of Biosensing. In Sensing and Biosensing with Optically Active Nanomaterials; Elsevier, 2021; pp 305–363. https://doi.org/10.1016/B978-0-323-90244-1.00002-1. (57) Maurizio, S. L.; Mandl, G. A.; Long, M. D.; Capobianco, J. A. Investigating the Fundamental Material Properties That Influence the Radioluminescence of Lanthanide-Doped Nanoparticles. Chem. Mater. 2022, 34 (22), 10123–10132. https://doi.org/10.1021/acs.chemmater.2c02830. (58) Kaur, M.; Mandl, G. A.; Maurizio, S. L.; Tessitore, G.; Capobianco, J. A. On the Photostability and Luminescence of Dye-Sensitized Upconverting Nanoparticles Using Modified IR820 Dyes. Nanoscale Adv. 2022, 4 (2), 608–618. https://doi.org/10.1039/d1na00710f. (59) Cooper, D. R.; Capobianco, J. A.; Seuntjens, J. Radioluminescence Studies of Colloidal Oleate-Capped β-Na(Gd,Lu)F4:Ln3+ Nanoparticles (Ln = Ce, Eu, Tb). Nanoscale 2018, 10 (16), 7821–7832. https://doi.org/10.1039/c8nr01262h. (60) Ahmad, F.; Wang, X.; Jiang, Z.; Yu, X.; Liu, X.; Mao, R.; Chen, X.; Li, W. Codoping Enhanced Radioluminescence of Nanoscintillators for X-Ray-Activated Synergistic Cancer Therapy and Prognosis Using Metabolomics. ACS Nano 2019, 13 (9), 10419–10433. https://doi.org/10.1021/acsnano.9b04213. (61) Wang, G. D.; Nguyen, H. T.; Chen, H.; Cox, P. B.; Wang, L.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J. X-Ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy. Theranostics 2016, 6 (13), 2295–2305. https://doi.org/10.7150/thno.16141. (62) Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chemical Reviews. American Chemical Society January 2004, pp 139–173. https://doi.org/10.1021/cr020357g. 95 (63) Dong, H.; Sun, L. D.; Yan, C. H. Energy Transfer in Lanthanide Upconversion Studies for Extended Optical Applications. Chemical Society Reviews. The Royal Society of Chemistry March 10, 2015, pp 1608–1634. https://doi.org/10.1039/c4cs00188e. (64) Wang, X.; Valiev, R. R.; Ohulchanskyy, T. Y.; Ågren, H.; Yang, C.; Chen, G. Dye-Sensitized Lanthanide-Doped Upconversion Nanoparticles. Chemical Society Reviews. The Royal Society of Chemistry July 17, 2017, pp 4150–4167. https://doi.org/10.1039/c7cs00053g. (65) Wisser, M. D.; Fischer, S.; Siefe, C.; Alivisatos, A. P.; Salleo, A.; Dionne, J. A. Improving Quantum Yield of Upconverting Nanoparticles in Aqueous Media via Emission Sensitization. Nano Lett. 2018, 18 (4), 2689–2695. https://doi.org/10.1021/acs.nanolett.8b00634. (66) Castano, A. P.; Demidova, T. N.; Hamblin, M. R. Mechanisms in Photodynamic Therapy: Part One—Photosensitizers, Photochemistry and Cellular Localization. Photodiagnosis Photodyn. Ther. 2004, 1 (4), 279–293. https://doi.org/10.1016/S1572-1000(05)00007-4. (67) Wang, C.; Cheng, L.; Liu, Z. Upconversion Nanoparticles for Photodynamic Therapy and Other Cancer Therapeutics. Theranostics 2013, 3 (5), 317–330. https://doi.org/10.7150/thno.5284. (68) Guo, H.; Qian, H.; Idris, N. M.; Zhang, Y. Singlet Oxygen-Induced Apoptosis of Cancer Cells Using Upconversion Fluorescent Nanoparticles as a Carrier of Photosensitizer. Nanomedicine Nanotechnology, Biol. Med. 2010, 6 (3), 486–495. https://doi.org/10.1016/j.nano.2009.11.004. (69) Wang, C.; Tao, H.; Cheng, L.; Liu, Z. Near-Infrared Light Induced in Vivo Photodynamic Therapy of Cancer Based on Upconversion Nanoparticles. Biomaterials 2011, 32 (26), 6145–6154. https://doi.org/10.1016/j.biomaterials.2011.05.007. (70) Ju, Q.; Chen, X.; Ai, F.; Peng, D.; Lin, X.; Kong, W.; Shi, P.; Zhu, G.; Wang, F. An Upconversion Nanoprobe Operating in the First Biological Window. J. Mater. Chem. B 2015, 3 (17), 3548–3555. https://doi.org/10.1039/c5tb00025d. (71) Freitag, L.; Ernst, A.; Thomas, M.; Prenzel, R.; Wahlers, B.; Macha, H. N. Sequential Photodynamic Therapy (PDT) and High Dose Brachytherapy for Endobronchial Tumour 96 Control in Patients with Limited Bronchogenic Carcinoma. Thorax 2004, 59 (9), 790–793. https://doi.org/10.1136/thx.2003.013599. (72) Benov, L. Photodynamic Therapy: Current Status and Future Directions. In Medical Principles and Practice; S. Karger AG, 2015; Vol. 24, pp 14–28. https://doi.org/10.1159/000362416. (73) Naccache, R.; Yu, Q.; Capobianco, J. A. The Fluoride Host: Nucleation, Growth, and Upconversion of Lanthanide-Doped Nanoparticles. Adv. Opt. Mater. 2015, 3 (4), 482–509. https://doi.org/10.1002/adom.201400628. (74) Mandl, G. A.; Van der Heggen, D.; Cooper, D. R.; Joos, J. J.; Seuntjens, J.; Smet, P. F.; Capobianco, J. A. On a Local (de-)Trapping Model for Highly Doped Pr 3+ Radioluminescent and Persistent Luminescent Nanoparticles. Nanoscale 2020, 12 (40), 20759–20766. https://doi.org/10.1039/D0NR06577C. (75) Brix, N.; Samaga, D.; Belka, C.; Zitzelsberger, H.; Lauber, K. Analysis of Clonogenic Growth in Vitro. Nat. Protoc. 2021, 16 (11), 4963–4991. https://doi.org/10.1038/s41596-021-00615-0. (76) Merck. Cell Dissociation with Trypsin | Mechanism in cell culture | Sigma-Aldrich https://www.sigmaaldrich.com/technical-documents/articles/biology/cell-dissociation-with-trypsin.html (accessed Jun 1, 2020). (77) ThermoFisher Scientific. Useful Numbers for Cell Culture | Thermo Fisher Scientific - CA https://www.thermofisher.com/ca/en/home/references/gibco-cell-culture-basics/cell-culture-protocols/cell-culture-useful-numbers.html (accessed Jun 16, 2020). (78) Mandl, G. A.; Van Der Heggen, D.; Cooper, D. R.; Smet, P.; Seuntjens, J.; Capobianco, J. A. Manuscript in Preparation; 2020. (79) Cooper, D. R.; Capobianco, J. A.; Seuntjens, J. Radioluminescence Studies of Colloidal Oleate-Capped β-Na(Gd,Lu)F 4 :Ln 3+ Nanoparticles (Ln = Ce, Eu, Tb). Nanoscale 2018, 10 (16), 7821–7832. https://doi.org/10.1039/C8NR01262H. (80) Ouyang, J.; Yin, D.; Cao, X.; Wang, C.; Song, K.; Liu, B.; Zhang, L.; Han, Y.; Wu, M. Synthesis of NaLuF 4 -Based Nanocrystals and Large Enhancement of Upconversion Luminescence of NaLuF 4 :Gd, Yb, Er by Coating an Active Shell for Bioimaging. Dalt. 97 Trans. 2014, 43 (37), 14001–14008. https://doi.org/10.1039/C4DT00509K. (81) Mai, H.-X.; Zhang, Y.-W.; Si, R.; Yan, Z.-G.; Sun, L.; You, L.-P.; Yan, C.-H. High-Quality Sodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesis and Optical Properties. J. Am. Chem. Soc. 2006, 128 (19), 6426–6436. https://doi.org/10.1021/ja060212h. (82) Li, J.; Wang, W.; Liu, B.; Duan, G.; Liu, Z. Enhanced Dy3+ White Emission via Energy Transfer in Spherical (Lu,Gd)3Al5O12 Garnet Phosphors. Sci. Rep. 2020, 10 (1), 1–9. https://doi.org/10.1038/s41598-020-59232-8. (83) Tang, Y.; Hu, J.; Elmenoufy, A. H.; Yang, X. Highly Efficient FRET System Capable of Deep Photodynamic Therapy Established on X-Ray Excited Mesoporous LaF3:Tb Scintillating Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7 (22), 12261–12269. https://doi.org/10.1021/acsami.5b03067. (84) Li, Y.; Chen, B.; Tong, L.; Zhang, X.; Xu, S.; Li, X.; Zhang, J.; Sun, J.; Wang, X.; Zhang, Y.; Sui, G.; Zhang, Y.; Zhang, X.; Xia, H. A Temperature Self-Monitoring NaYF4:Dy3+/Yb3+@NaYF4:Er3+/Yb3+ Core-Shell Photothermal Converter for Photothermal Therapy Application. Results Phys. 2019, 15, 102704. https://doi.org/10.1016/j.rinp.2019.102704. (85) Zhang, J.; Hao, Z.; Li, J.; Zhang, X.; Luo, Y.; Pan, G. Observation of Efficient Population of the Red-Emitting State from the Green State by Non-Multiphonon Relaxation in the Er3+-Yb3+ System. Light Sci. Appl. 2015, 4 (1), e239. https://doi.org/10.1038/lsa.2015.12. (86) Sousa, J. F.; Alves, R. T.; Rego-Filho, F. G.; Gouveia-Neto, A. S. Erbium-to-Dysprosium Energy-Transfer Mechanism and Visible Luminescence in Lead-Cadmium-Fluorogermanate Glass Excited at 405 Nm. Chem. Phys. Lett. 2019, 723 (December 2018), 28–32. https://doi.org/10.1016/j.cplett.2019.03.017. (87) Hufner, S.; Judd, B. R. Optical Spectra of Transparent Rare Earth Compounds. Phys. Today 1979, 32 (3), 76–77. https://doi.org/10.1063/1.2995463. (88) Maurizio, S. L.; Tessitore, G.; Mandl, G. A.; Capobianco, J. A. Luminescence Dynamics and Enhancement of the UV and Visible Emissions of Tm3+ in LiYF4:Yb3+,Tm3+ Upconverting Nanoparticles. Nanoscale Adv. 2019, 1 (11), 4492–4500. https://doi.org/10.1039/c9na00556k. 98 (89) Wu, X.; Tang, Z.; Hu, S.; Yan, H.; Xi, Z.; Liu, Y. NaLuF4:Yb3+,Er3+ Bifunctional Microcrystals Codoped with Gd3+ or Dy3+ Ions: Enhanced Upconversion Luminescence and Ferromagnetic-Paramagnetic Transition. J. Alloys Compd. 2016, 684, 105–111. https://doi.org/10.1016/j.jallcom.2016.05.074. (90) Tang, J.; Luo, L.; Li, W.; Wang, J.; Du, P. Ethylene Glycol Associated Facile Preparation and Luminescent Behaviors of RE (RE = Sm3+, Dy3+) Ions Activated NaLuF4 Nanoparticles. Opt. Mater. (Amst). 2021, 120, 111463. https://doi.org/10.1016/j.optmat.2021.111463. (91) Hasegawa, Y.; Wada, Y.; Yanagida, S. Strategies for the Design of Luminescent Lanthanide(III) Complexes and Their Photonic Applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. Elsevier December 31, 2004, pp 183–202. https://doi.org/10.1016/j.jphotochemrev.2004.10.003. (92) Andrews, D. L.; Rodríguez, J. Resonance Energy Transfer: Spectral Overlap, Efficiency, and Direction. J. Chem. Phys. 2007, 127 (8), 084509. https://doi.org/10.1063/1.2759489. (93) Dorset, D. L. X-Ray Diffraction: A Practical Approach. Microsc. Microanal. 1998, 4 (5), 513–515. https://doi.org/10.1017/S143192769800049X. (94) Bogachev, N. A.; Betina, A. A.; Bulatova, T. S.; Nosov, V. G.; Kolesnik, S. S.; Tumkin, I. I.; Ryazantsev, M. N.; Skripkin, M. Y.; Mereshchenko, A. S. Lanthanide-Ion-Doping Effect on the Morphology and the Structure of NaYF4:Ln3+ Nanoparticles. Nanomaterials 2022, 12 (17), 2972. https://doi.org/10.3390/nano12172972. (95) Sousa, J. F.; Alves, R. T.; Rego-Filho, F. G.; Gouveia-Neto, A. S. Erbium-to-Dysprosium Energy-Transfer Mechanism and Visible Luminescence in Lead-Cadmium-Fluorogermanate Glass Excited at 405 Nm. Chem. Phys. Lett. 2019, 723, 28–32. https://doi.org/10.1016/j.cplett.2019.03.017. (96) Majewski, M. R.; Woodward, R. I.; Jackson, S. D. Dysprosium Mid‐Infrared Lasers: Current Status and Future Prospects. Laser Photon. Rev. 2020, 14 (3), 1900195. https://doi.org/10.1002/lpor.201900195. (97) Wang, J.; Zhu, X.; Mollaee, M.; Zong, J.; Peyhambarian, N. Efficient Energy Transfer from Er 3+ to Ho 3+ and Dy 3+ in ZBLAN Glass. Opt. Express 2020, 28 (4), 5189. 99 https://doi.org/10.1364/oe.384435. (98) Huang, F.; Yang, T.; Wang, S.; Lin, L.; Hu, T.; Chen, D. Temperature Sensitive Cross Relaxation between Er 3+ Ions in Laminated Hosts: A Novel Mechanism for Thermochromic Upconversion and High Performance Thermometry. J. Mater. Chem. C 2018, 6 (45), 12364–12370. https://doi.org/10.1039/C8TC04733B. (99) Chiossi, F.; Vasiukov, S.; Borghesani, A. F.; Braggio, C.; Di Lieto, A.; Tonelli, M.; Carugno, G. High Infrared Light Yield of Erbium-Doped Fluoride Crystals. J. Lumin. 2020, 219 (November 2019), 116883. https://doi.org/10.1016/j.jlumin.2019.116883. (100) Bai, Z.; Fujii, M.; Hasegawa, T.; Imakita, K.; Mizuhata, M.; Hayashi, S. Efficient Ultraviolet-Blue to near-Infrared Downconversion in Bi–Dy–Yb-Doped Zeolites. J. Phys. D. Appl. Phys. 2011, 44 (45), 455301. https://doi.org/10.1088/0022-3727/44/45/455301. (101) Sharafi, Z.; Bakhshi, B.; Javidi, J.; Adrangi, S. Synthesis of Silica-Coated Iron Oxide Nanoparticles: Preventing Aggregation without Using Additives or Seed Pretreatment. Iran. J. Pharm. Res. IJPR 2018, 17 (1), 386–395. (102) Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly Luminescent Lanthanide-Doped Upconverting Nanoparticles. Nano Lett. 2011, 11 (2), 835–840. https://doi.org/10.1021/nl1041929. (103) Sun, W.; Zhou, Z.; Pratx, G.; Chen, X.; Chen, H. Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications. Theranostics 2020, 10 (3), 1296–1318. https://doi.org/10.7150/thno.41578. (104) Liang, L.; Care, A.; Zhang, R.; Lu, Y.; Packer, N. H.; Sunna, A.; Qian, Y.; Zvyagin, A. V. Facile Assembly of Functional Upconversion Nanoparticles for Targeted Cancer Imaging and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2016, 8 (19), 11945–11953. https://doi.org/10.1021/acsami.6b00713. (105) Rosenberg, D. J.; Alayoglu, S.; Kostecki, R.; Ahmed, M. Synthesis of Microporous Silica Nanoparticles to Study Water Phase Transitions by Vibrational Spectroscopy. Nanoscale Adv. 2019, 1 (12), 4878–4887. https://doi.org/10.1039/C9NA00544G. (106) Cauda, V.; Argyo, C.; Bein, T. Impact of Different PEGylation Patterns on the Long-Term 100 Bio-Stability of Colloidal Mesoporous Silica Nanoparticles. J. Mater. Chem. 2010, 20 (39), 8693–8699. https://doi.org/10.1039/c0jm01390k. (107) Pham, A. L. T.; Sedlak, D. L.; Doyle, F. M. Dissolution of Mesoporous Silica Supports in Aqueous Solutions: Implications for Mesoporous Silica-Based Water Treatment Processes. Appl. Catal. B Environ. 2012, 126, 258–264. https://doi.org/10.1016/j.apcatb.2012.07.018. (108) Wang, Y.; Liu, K.; Liu, X.; Dohnalová, K.; Gregorkiewicz, T.; Kong, X.; Aalders, M. C. G.; Buma, W. J.; Zhang, H. Critical Shell Thickness of Core/Shell Upconversion Luminescence Nanoplatform for FRET Application. J. Phys. Chem. Lett. 2011, 2 (17), 2083–2088. https://doi.org/10.1021/jz200922f. (109) Han, R.; Shi, J.; Liu, Z.; Wang, H.; Wang, Y. Fabrication of Mesoporous-Silica-Coated Upconverting Nanoparticles with Ultrafast Photosensitizer Loading and 808 Nm NIR-Light-Triggering Capability for Photodynamic Therapy. Chem. - An Asian J. 2017, 12 (17), 2197–2201. https://doi.org/10.1002/asia.201700836. (110) Lai, J.; Shah, B. P.; Zhang, Y.; Yang, L.; Lee, K. B. Real-Time Monitoring of ATP-Responsive Drug Release Using Mesoporous-Silica-Coated Multicolor Upconversion Nanoparticles. ACS Nano 2015, 9 (5), 5234–5245. https://doi.org/10.1021/acsnano.5b00641. (111) Zhou, Y.; Quan, G.; Wu, Q.; Zhang, X.; Niu, B.; Wu, B.; Huang, Y.; Pan, X.; Wu, C. Mesoporous Silica Nanoparticles for Drug and Gene Delivery. Acta Pharm. Sin. B 2018, 8 (2), 165–177. https://doi.org/10.1016/j.apsb.2018.01.007. (112) Han, R.; Tang, K.; Hou, Y.; Yu, J.; Wang, C.; Wang, Y. Fabrication of Core/Shell/Shell Structure Nanoparticle with Anticancer Drug and Dual-Photosensitizer Co-Loading for Synergistic Chemotherapy and Photodynamic Therapy. Microporous Mesoporous Mater. 2020, 297 (January), 110049. https://doi.org/10.1016/j.micromeso.2020.110049. (113) Nahorniak, M.; Pop-Georgievski, O.; Velychkivska, N.; Filipová, M.; Rydvalová, E.; Gunár, K.; Matouš, P.; Kostiv, U.; Horák, D. Rose Bengal-Modified Upconverting Nanoparticles: Synthesis, Characterization, and Biological Evaluation. Life 2022, 12 (9), 1383. https://doi.org/10.3390/life12091383. (114) Wawrzyńczyk, D.; Cichy, B.; Zaręba, J. K.; Bazylińska, U. On the Interaction between Up- 101 Converting NaYF 4 :Er 3+ ,Yb 3+ Nanoparticles and Rose Bengal Molecules Constrained within the Double Core of Multifunctional Nanocarriers. J. Mater. Chem. C 2019, 7 (47), 15021–15034. https://doi.org/10.1039/C9TC04163J. (115) Ho, T.-H.; Yang, C.-H.; Jiang, Z.-E.; Lin, H.-Y.; Chen, Y.-F.; Wang, T.-L. NIR-Triggered Generation of Reactive Oxygen Species and Photodynamic Therapy Based on Mesoporous Silica-Coated LiYF4 Upconverting Nanoparticles. Int. J. Mol. Sci. 2022, 23 (15), 8757. https://doi.org/10.3390/ijms23158757. (116) Chang, C. C.; Yang, Y. T.; Yang, J. C.; Wu, H. Da; Tsai, T. Absorption and Emission Spectral Shifts of Rose Bengal Associated with DMPC Liposomes. Dye. Pigment. 2008, 79 (2), 170–175. https://doi.org/10.1016/j.dyepig.2008.02.003. (117) International Organization for Standardization (ISO). ISO 10993-5:2019 Biological Evaluation of Medical Devices - Part 5: Tests for in Vitro Cytotoxicity. 2019. (118) Huang, X.; Teng, X.; Chen, D.; Tang, F.; He, J. The Effect of the Shape of Mesoporous Silica Nanoparticles on Cellular Uptake and Cell Function. Biomaterials 2010, 31 (3), 438–448. https://doi.org/10.1016/j.biomaterials.2009.09.060. (119) Kostiv, U.; Šlouf, M.; Macková, H.; Zhigunov, A.; Engstová, H.; Smolková, K.; Ježek, P.; Horák, D. Silica-Coated Upconversion Lanthanide Nanoparticles: The Effect of Crystal Design on Morphology, Structure and Optical Properties. Beilstein J. Nanotechnol. 2015, 6 (1), 2290–2299. https://doi.org/10.3762/bjnano.6.235. (120) Ren, Z. X.; Yu, H. Bin; Li, J. S.; Shen, J. L.; Du, W. Sen. Suitable Parameter Choice on Quantitative Morphology of A549 Cell in Epithelial-Mesenchymal Transition. Biosci. Rep. 2015, 35 (3), 1–7. https://doi.org/10.1042/BSR20150070. (121) Hsu, C.-Y.; Chen, C.-W.; Yu, H.-P.; Lin, Y.-F.; Lai, P.-S. Bioluminescence Resonance Energy Transfer Using Luciferase-Immobilized Quantum Dots for Self-Illuminated Photodynamic Therapy. Biomaterials 2013, 34 (4), 1204–1212. https://doi.org/10.1016/j.biomaterials.2012.08.044. (122) Marill, J.; Anesary, N. M.; Zhang, P.; Vivet, S.; Borghi, E.; Levy, L.; Pottier, A. Hafnium Oxide Nanoparticles: Toward an in Vitropredictive Biological Effect? Radiat. Oncol. 2014, 9 (1), 150. https://doi.org/10.1186/1748-717X-9-150. 102 (123) Zhang, P.; Marill, J.; Darmon, A.; Mohamed Anesary, N.; Lu, B.; Paris, S. NBTXR3 Radiotherapy-Activated Functionalized Hafnium Oxide Nanoparticles Show Efficient Antitumor Effects Across a Large Panel of Human Cancer Models. Int. J. Nanomedicine 2021, Volume 16, 2761–2773. https://doi.org/10.2147/IJN.S301182. (124) Ren, Y.; Rosch, J. G.; Landry, M. R.; Winter, H.; Khan, S.; Pratx, G.; Sun, C. Tb-Doped Core–Shell–Shell Nanophosphors for Enhanced X-Ray Induced Luminescence and Sensitization of Radiodynamic Therapy. Biomater. Sci. 2021, 9 (2), 496–505. https://doi.org/10.1039/D0BM00897D. (125) Clement, S.; Chen, W.; Deng, W.; Goldys, E. M. X-Ray Radiation-Induced and Targeted Photodynamic Therapy with Folic Acid-Conjugated Biodegradable Nanoconstructs. Int. J. Nanomedicine 2018, 13, 3553–3570. https://doi.org/10.2147/IJN.S164967. (126) Liu, P. D.; Jin, H.; Guo, Z.; Ma, J.; Zhao, J.; Li, D.; Wu, H.; Gu, N. Silver Nanoparticles Outperform Gold Nanoparticles in Radiosensitizing U251 Cells in Vitro and in an Intracranial Mouse Model of Glioma. Int. J. Nanomedicine 2016, Volume 11, 5003–5014. https://doi.org/10.2147/IJN.S115473. (127) Gu, X.; Shen, C.; Li, H.; Goldys, E. M.; Deng, W. X-Ray Induced Photodynamic Therapy (PDT) with a Mitochondria-Targeted Liposome Delivery System. J. Nanobiotechnology 2020, 18 (1), 87. https://doi.org/10.1186/s12951-020-00644-z. (128) Mishchenko, T.; Balalaeva, I.; Gorokhova, A.; Vedunova, M.; Krysko, D. V. Which Cell Death Modality Wins the Contest for Photodynamic Therapy of Cancer? Cell Death Dis. 2022, 13 (5), 455. https://doi.org/10.1038/s41419-022-04851-4. (129) Yang, H. J.; Kim, N.; Seong, K. M.; Youn, H.; Youn, B. Investigation of Radiation-Induced Transcriptome Profile of Radioresistant Non-Small Cell Lung Cancer A549 Cells Using RNA-Seq. PLoS One 2013, 8 (3), e59319. https://doi.org/10.1371/journal.pone.0059319. (130) de Kraker, J.; Hoefnagel, C. A.; Voûte, P. A. 131I-Rose Bengal Therapy in Hepatoblastoma Patients. Eur. J. Cancer Clin. Oncol. 1991, 27 (5), 613–615. https://doi.org/10.1016/0277-5379(91)90229-7. (131) Subiel, A.; Ashmore, R.; Schettino, G. Standards and Methodologies for Characterizing Radiobiological Impact of High-Z Nanoparticles. Theranostics 2016, 6 (10), 1651–1671. 103 https://doi.org/10.7150/thno.15019. (132) Neuer, A. L.; Gerken, L. R. H.; Keevend, K.; Gogos, A.; Herrmann, I. K. Uptake, Distribution and Radio-Enhancement Effects of Gold Nanoparticles in Tumor Microtissues. Nanoscale Adv. 2020, 2 (7), 2992–3001. https://doi.org/10.1039/D0NA00256A. (133) Absher, M. Hemocytometer Counting. In Tissue Culture; Elsevier, 1973; pp 395–397. https://doi.org/10.1016/b978-0-12-427150-0.50098-x.