References [1] International Civil Aviation Organisation. “The World of Air Transport in 2019”. In: (2019). url: https://www.icao.int/annual-report-2019/Pages/the-world-of-airtransport- in-2019.aspx. [2] International Air Transport Association. “IATA/Tourism Economics Air Passenger Forecast, March 2022”. In: (2022). url: https://www.iata.org/en/pressroom/2022-releases/ 2022-03-01-01/. [3] Corinne Le Quéré et al. Supplementary data to: Le Quéré et al (2020), Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. 2020. url: https: //www.icos-cp.eu/gcp-covid19. [4] John A. Ekaterinaris. “High-order accurate, low numerical diffusion methods for aerodynamics”. In: Progress in Aerospace Sciences 41.3 (2005), pp. 192–300. issn: 0376-0421. url: https: //www.sciencedirect.com/science/article/pii/S0376042105000473. [5] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd. USA: Prentice Hall Press, 2009. isbn: 0136042597. [6] Deep Blue computer beats world chess champion. 1996. url: https://www.theguardian. com/sport/2021/feb/12/deep-blue-computer-beats-kasparov-chess-1996. [7] Sam Adams et al. “Mapping the Landscape of Human-Level Artificial General Intelligence”. In: AI Magazine 33 (Mar. 2012), pp. 25–42. [8] Hubert L. Dreyfus. What Computers Still Can’t Do: A Critique of Artificial Reason. Cambridge, MA, USA: MIT Press, 1992. isbn: 0262041340. [9] Ragnar Fjelland. “Why general artificial intelligence will not be realized”. In: Humanities and Social Sciences Communications 7 (June 2020), p. 10. 61 [10] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. http : / / www . deeplearningbook.org. MIT Press, 2016. [11] Warren Mcculloch and Walter Pitts. “A Logical Calculus of Ideas Immanent in Nervous Activity”. In: Bulletin of Mathematical Biophysics 5 (1943), pp. 127–147. [12] Geoffrey E. Hinton, Simon Osindero and Yee-Whye Teh. “A Fast Learning Algorithm for Deep Belief Nets”. In: Neural Computation 18.7 (2006), pp. 1527–1554. issn: 0899-7667. eprint: https://direct.mit.edu/neco/article-pdf/18/7/1527/816558/neco.2006. 18.7.1527.pdf. [13] Y. Taigman et al. “DeepFace: Closing the Gap to Human-Level Performance in Face Verification”. In: (2014), pp. 1701–1708. [14] D. Stuart Pope Thomas F. Brooks and Michael A. Marcolini. Airfoil Self-Noise Data Set. 2014. url: https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise#. [15] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second. The MIT Press, 2018. url: http://incompleteideas.net/book/the-book-2nd.html. [16] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: CoRR abs/1312.5602 (2013). arXiv: 1312.5602. url: http://arxiv.org/abs/1312.5602. [17] Xindong Wu et al. “Top 10 algorithms in data mining”. In: Knowledge and Information Systems 14 (2007). [18] Daniel P. Raymer. Aircraft Design: A Conceptual Approach. 5th. AIAA Education Series. [19] Nicolas Bons and Joaquim Martins. “Aerostructural Wing Design Exploration with Multidisciplinary Design Optimization”. In: (2020). [20] Aerospace and AI - Bringing together Montreal’s distinctive strengths. 2019. url: https: / / www . bcg . com / en - ca / aerospace - and - ai - bringing - together - montreals - distinctive-strengths. [21] IVADO and Bombardier Sign a Strategic Agreement to Develop Innovative Digital Solutions. 2019. url: https://ivado.ca/en/2019/02/20/ivado- and- bombardier- sign- astrategic- agreement-to-develop-innovative-digital-solutions/. [22] SCALE AI. “Predictive Analytics for Aviation”. In: (2021). url: https://www.scaleai. ca/funded-projects/predictive-analytics-for-aviation/. 62 [23] Emmanuel J. Candès et al. “Robust Principal Component Analysis?” In: J. ACM 58.3 (2011). issn: 0004-5411. [24] Krithika Manohar et al. “Predicting shim gaps in aircraft assembly with machine learning and sparse sensing”. In: Journal of Manufacturing Systems 48 (2018), pp. 87–95. issn: 0278- 6125. url: https://www.sciencedirect.com/science/article/pii/S0278612518300116. [25] K. Manohar et al. “Data-Driven Sparse Sensor Placement for Reconstruction: Demonstrating the Benefits of Exploiting Known Patterns”. In: IEEE Control Systems Magazine 38.3 (2018), pp. 63–86. [26] D. Bruneo and F. De Vita. “On the Use of LSTM Networks for Predictive Maintenance in Smart Industries”. In: (2019), pp. 241–248. [27] A. Nanduri and L. Sherry. “Anomaly detection in aircraft data using Recurrent Neural Networks (RNN)”. In: (2016), pp. 5C2–1–5C2–8. [28] Liang Xu et al. “Guided Wave-Convolutional Neural Network Based Fatigue Crack Diagnosis of Aircraft Structures”. In: Sensors 19.16 (2019). issn: 1424-8220. [29] Paul Garnier et al. A review on Deep Reinforcement Learning for Fluid Mechanics. 2021. arXiv: 1908.04127 [physics.comp-ph]. [30] J. Rabault et al. “Deep reinforcement learning in fluid mechanics: A promising method for both active flow control and shape optimization”. In: Journal of Hydrodynamics 32 (2020), pp. 234–246. [31] Tony Hey, Stewart Tansley and Kristin Tolle. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, 2009. isbn: 978-0-9825442-0-4. url: https : / / www . microsoft . com / en - us / research / publication / fourth - paradigm - data - intensive-scientific-discovery/. [32] B.C. Vermeire, F.D. Witherden and P.E. Vincent. “On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools”. In: Journal of Computational Physics 334 (2017), pp. 497–521. issn: 0021-9991. [33] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org. 2015. url: https://www.tensorflow.org/. 63 [34] David Donoho. “50 Years of Data Science”. In: Journal of Computational and Graphical Statistics 26.4 (2017), pp. 745–766. eprint: https://doi.org/10.1080/10618600.2017. 1384734. [35] Masataka Gamahara and Yuji Hattori. “Searching for turbulence models by artificial neural network”. In: Physical Review Fluids 2 (5 2017), p. 054604. [36] Julia Ling, Reese Jones and Jeremy Templeton. “Machine learning strategies for systems with invariance properties”. In: Journal of Computational Physics 318 (2016). [37] S. B. Pope. “A more general effective-viscosity hypothesis”. In: Journal of Fluid Mechanics 72.2 (1975), 331–340. [38] Salar Taghizadeh, Freddie D Witherden and Sharath S Girimaji. “Turbulence closure modeling with data-driven techniques: physical compatibility and consistency considerations”. In: New Journal of Physics 22.9 (2020), p. 093023. issn: 1367-2630. [39] F.D. Witherden, A.M. Farrington and P.E. Vincent. “PyFR: An open source framework for solving advection–diffusion type problems on streaming architectures using the flux reconstruction approach”. In: Computer Physics Communications 185.11 (2014), pp. 3028–3040. issn: 0010-4655. url: https : / / www . sciencedirect . com / science / article / pii / S0010465514002549. [40] John Kim, Parviz Moin and Robert Moser. “The Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number”. In: Journal of Fluid Mechanics 177 (May 1987). [41] Ivette Rodriguez et al. “Direct numerical simulation of a NACA0012 in full stall”. In: International Journal of Heat and Fluid Flow 43 (2013), pp. 194–203. [42] P.A. Davidson. Turbulence: An Introduction for Scientists and Engineers. OUP Oxford, 2004. isbn: 9780191589850. url: https://books.google.ca/books?id=e\_tzBAAAQBAJ. [43] B.C. Vermeire, Carlos Pereira and Hamid R. Karbasian. Computational Fluid Dynamics: An Open-Source Approach. 2021. [44] H.T.Huynh. “A Flux Reconstruction Approach to High-order Schemes Including Discontinuous Galerkin Methods”. In: In 18th AIAA Computational Fluid Dynamics Conference (2007), p. 4079. [45] Uriel Frisch. Turbulence: The Legacy of A.N. Kolmogorov. Nov. 1995. isbn: 9780521451031. 64 [46] Osborne Reynolds. “IV. On the dynamical theory of incompressible viscous fluids and the determination of the criterion”. In: Philosophical Transactions of the Royal Society of London. (A.) 186 (1895), pp. 123–164. [47] P. Y. Chou. “On velocity correlations and the solutions of the equations of turbulent fluctuation”. In: Quarterly of Applied Mathematics 3.1 (1945), pp. 38–54. [48] M.A. Leschziner and F.-S. Lien. “Numerical Aspects of Applying Second-Moment Closure to Complex Flows”. In: Closure Strategies for Turbulent and Transitional Flows. Ed. by B. E. Launder and N. D.Editors Sandham. Cambridge University Press, 2002, 153–187. [49] C G Speziale. “Analytical Methods for the Development of Reynolds-Stress Closures in Turbulence”. In: Annual Review of Fluid Mechanics 23.1 (1991), pp. 107–157. eprint: https://doi.org/10.1146/annurev.fl.23.010191.000543. [50] Stephen B Pope. Turbulent flows. Cambridge: Cambridge Univ. Press, 2011. url: https: //cds.cern.ch/record/1346971. [51] T. B. Gatski and C. G. Speziale. “On explicit algebraic stress models for complex turbulent flows”. In: Journal of Fluid Mechanics 254 (1993), 59–78. [52] R. A. Fisher. “The Use of Multiple Measurements in Taxonomic Problems”. In: Annals of Eugenics 7.7 (1936), pp. 179–188. [53] Hugo Larochelle. “Études de techniques d’appentissage non-supervisé pour l’amélioration de l’entraînement supervisé de modèles connexionnistes”. PhD thesis. Université de Montréal, 2009. [54] B. Liu and Y. Liu. “Image Classification for Dogs and Cats”. In: (2014). [55] Leslie N. Smith. Cyclical Learning Rates for Training Neural Networks. 2015. url: https: //arxiv.org/abs/1506.01186. [56] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. url: http : //archive.ics.uci.edu/ml. [57] Kaiming He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015. url: https://arxiv.org/abs/1502.01852. [58] Abien Fred Agarap. “Deep learning using rectified linear units (relu)”. In: arXiv preprint arXiv:1803.08375 (2018). [59] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2014. 65 [60] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In: J. Mach. Learn. Res. 15.1 (2014), 1929–1958. issn: 1532-4435. [61] P.A. Davidson. Turbulence: An Introduction for Scientists and Engineers. OUP Oxford, 2004. isbn: 9780191589850. url: https://books.google.ca/books?id=e\_tzBAAAQBAJ. [62] Rui Wang et al. “Towards Physics-Informed Deep Learning for Turbulent Flow Prediction”. In: (2020). [63] Fangying Song and George Em Karniadakis. A Universal Fractional Model of Wall- Turbulence. 2018.