References (1) Asay, J. R.; Shahinpoor, M. High-Pressure Shock Compression of Solids; Springer Science & Business Media, 2012. (2) D’Addario, D. Organic Solid State Reactions; Springer Science & Business Media, 2005 (3) Zhu, L.; Wang, Z.; Wang, Y.; Zou, G.; Mao, H.; Ma, Y. Spiral Chain O4 Form of Dense Oxygen. PNAS. 2012, 109 (3), 751–753. https://doi.org/10.1073/pnas.1119375109. (4) Uemura, E.; Akahama, Y.; Kawamura, H.; Bihan, T. L.; Shobu, T.; Noda, Y.; Shimomura, O. Structural Studies of β-O2 under Pressure. J. Phys. Condens. Matter. 2002, 14 (44), 10423–10428. https://doi.org/10.1088/0953-8984/14/44/305. (5) Degtyareva, O. Crystal Structure of Simple Metals at High Pressures. High Press. Res. 2010, 30 (3), 343–371. https://doi.org/10.1080/08957959.2010.508877. (6) Chen, Y.-M.; Geng, H.-Y.; Yan, X.-Z.; Wang, Z.-W.; Chen, X.-R.; Wu, Q. Predicted Novel Insulating Electride Compound between Alkali Metals Lithium and Sodium under High Pressure. Chin. Phys. B 2017, 26 (5), 056102. https://doi.org/10.1088/1674-1056/26/5/056102. (7) Glowacki, D. R.; Lightfoot, R.; Harvey, J. N. Non-Equilibrium Phenomena and Molecular Reaction Dynamics: Mode Space, Energy Space and Conformer Space. Mol. Phys. 2013, 111 (5), 631–640. https://doi.org/10.1080/00268976.2013.780100. (8) Burke, K.; Wagner, L. O. DFT in a Nutshell. Int. J. Quantum Chem. 2013, 113 (2), 96–101. https://doi.org/10.1002/qua.24259. (9) The Nobel Prize in Chemistry 1998. https://www.nobelprize.org/prizes/chemistry/1998/summary/ (accessed 2022-07-01). (10) Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 1926, 28 (6), 1049–1070. https://doi.org/10.1103/PhysRev.28.1049. (11) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136 (3B), B864–B871. https://doi.org/10.1103/PhysRev.136.B864. (12) Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140 (4A), A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133. (13) Gao, S.-P.; Cai, G.; Xu, Y. Band Structures for Ge3N4 Polymorphs Studied by DFT-LDA and GWA. Comput. Mater. Sci. 2013, 67, 292–295. https://doi.org/10.1016/j.commatsci.2012.09.008. (14) Borlido, P.; Schmidt, J.; Huran, A. W.; Tran, F.; Marques, M. A. L.; Botti, S. Exchange-Correlation Functionals for Band Gaps of Solids: Benchmark, Reparametrization and Machine Learning. Npj Comput. Mater. 2020, 6 (1), 96. https://doi.org/10.1038/s41524-020-00360-0. (15) Perdew, J. P.; Yang, W.; Burke, K.; Yang, Z.; Gross, E. K. U.; Scheffler, M.; Scuseria, G. E.; Henderson, T. M.; Zhang, I. Y.; Ruzsinszky, A.; Peng, H.; Sun, J.; Trushin, E.; Görling, A. Understanding Band Gaps of Solids in Generalized Kohn–Sham Theory. PNAS. 2017, 114 (11), 2801. https://doi.org/10.1073/pnas.1621352114. (16) Sham, L. J.; Schlüter, M. Density-Functional Theory of the Energy Gap. Phys. Rev. Lett. 1983, 51 (20), 1888–1891. https://doi.org/10.1103/PhysRevLett.51.1888. (17) Perdew, J. P.; Levy, M. Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities. Phys. Rev. Lett. 1983, 51 (20), 1884–1887. https://doi.org/10.1103/PhysRevLett.51.1884. (18) Mosquera, M. A.; Wasserman, A. Derivative Discontinuities in Density Functional Theory. Mol. Phys. 2014, 112 (23), 2997–3013. https://doi.org/10.1080/00268976.2014.968650. (19) Ferreira, L. G.; Marques, M.; Teles, L. K. Slater Half-Occupation Technique Revisited: The LDA-1/2 and GGA-1/2 Approaches for Atomic Ionization Energies and Band Gaps in Semiconductors. AIP Adv. 2011, 1 (3), 032119. https://doi.org/10.1063/1.3624562. (20) Hedin, L. New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem. Phys. Rev. 1965, 139 (3A), A796–A823. https://doi.org/10.1103/PhysRev.139.A796. (21) Liu, A. Y.; Cohen, M. L. Prediction of New Low Compressibility Solids. Science. 1989, 245 (4920), 841–842. https://doi.org/10.1126/science.245.4920.841. (22) Somayazulu, M.; Ahart, M.; Mishra, A. K.; Geballe, Z. M.; Baldini, M.; Meng, Y.; Struzhkin, V. V.; Hemley, R. J. Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. Phys. Rev. Lett. 2019, 122 (2), 027001. https://doi.org/10.1103/PhysRevLett.122.027001. (23) Pickard, C. J.; Needs, R. J. High-Pressure Phases of Silane. Phys. Rev. Lett. 2006, 97 (4), 045504. https://doi.org/10.1103/PhysRevLett.97.045504. (24) Bednorz, J. G.; Müller, K. A. Possible High Tc Superconductivity in the Ba−La−Cu−O System. Z. Für Phys. B Condens. Matter 1986, 64 (2), 189–193. https://doi.org/10.1007/BF01303701. (25) The Nobel Prize in Physics 1987. https://www.nobelprize.org/prizes/physics/1987/summary/ (accessed 2022-08-01). (26) Liang, T.; Zhang, Z.; Feng, X.; Jia, H.; Pickard, C. J.; Redfern, S. A.; Duan, D. Ternary Hypervalent Silicon Hydrides via Lithium at High Pressure. Phys. Rev. Mater. 2020, 4 (11), 113607. https://doi.org/10.1103/PhysRevMaterials.4.113607. (27) Pak, C.; Rienstra-Kiracofe, J. C.; Schaefer, H. F. Electron Affinities of Silicon Hydrides: SiHn(n=0− 4) and Si2Hn(n=0− 6). J. Phys. Chem. A. 2000, 104 (47), 11232–11242. https://doi.org/10.1021/jp003029y. (28) Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials. 2014, 7 (4), 2833–2881. https://doi.org/10.3390/ma7042833. (29) Wang, R. M.; Xing, Y. J.; Xu, J.; Yu, D. P. Fabrication and Microstructure Analysis on Zinc Oxide Nanotubes. New J. Phys. 2003, 5, 115–115. https://doi.org/10.1088/1367-2630/5/1/115. (30) Dubrovinskaia, N.; Solozhenko, V. L.; Miyajima, N.; Dmitriev, V.; Kurakevych, O. O.; Dubrovinsky, L. Superhard Nanocomposite of Dense Polymorphs of Boron Nitride: Noncarbon Material Has Reached Diamond Hardness. Appl. Phys. Lett. 2007, 90 (10), 101912. https://doi.org/10.1063/1.2711277. (31) Takahashi, N.; Terada, K.; Nakamura, T. Atmospheric Pressure Chemical Vapor Deposition of Tin Nitride Thin Films Using a Halide Source. J. Mater. Chem. 2000, 10 (12), 2835–2837. https://doi.org/10.1039/B005032F. (32) He, H.; Sekine, T.; Kobayashi, T.; Kimoto, K. Phase Transformation of Germanium Nitride (Ge3N4) under Shock Wave Compression. J. Appl. Phys. 2001, 90 (9), 4403–4406. https://doi.org/10.1063/1.1407851. (33) Shemkunas, M. P.; Wolf, G. H.; Leinenweber, K.; Petuskey, W. T. Rapid Synthesis of Crystalline Spinel Tin Nitride by a Solid-State Metathesis Reaction. J. Am. Ceram. Soc. 2002, 85 (1), 101–104. https://doi.org/10.1111/j.1151-2916.2002.tb00047.x. (34) Scotti, N.; Kockelmann, W.; Senker, J.; Traßel, St.; Jacobs, H. Sn3N4, ein Zinn(IV)-nitrid – Synthese und erste Strukturbestimmung einer binären Zinn–Stickstoff-Verbindung. Z. Für Anorg. Allg. Chem. 1999, 625 (9), 1435–1439. https://doi.org/10.1002/(SICI)1521-3749(199909)625:9<1435::AID-ZAAC1435>3.0.CO;2-%23 (35) Zerr, A.; Miehe, G.; Serghiou, G.; Schwarz, M.; Kroke, E.; Riedel, R.; Fueß, H.; Kroll, P.; Boehler, R. Synthesis of Cubic Silicon Nitride. Nature. 1999, 400 (6742), 340–342. https://doi.org/10.1038/22493. (36) Zerr, A.; Miehe, G.; Riedel, R. Synthesis of Cubic Zirconium and Hafnium Nitride Having Th3P4 Structure. Nat. Mater. 2003, 2 (3), 185–189. https://doi.org/10.1038/nmat836. (37) Serghiou, G.; Miehe, G.; Tschauner, O.; Zerr, A.; Boehler, R. Synthesis of a Cubic Ge3N4 Phase at High Pressures and Temperatures. J. Chem. Phys. 1999, 111 (10), 4659–4662. https://doi.org/10.1063/1.479227. (38) Lerch, M.; Füglein, E.; Wrba, J. Synthesis, Crystal Structure, and High Temperature Behavior of Zr3N4. Z. Für Anorg. Allg. Chem. 1996, 622 (2), 367–372. https://doi.org/10.1002/zaac.19966220227. (39) Lowther, J. E. High-Pressure Phases and Structural Bonding of Ge3N4. Phys. Rev. B. 2000, 62 (1), 5–8. https://doi.org/10.1103/PhysRevB.62.5. (40) Bailey, E.; Ray, N. M. T.; Hector, A. L.; Crozier, P.; Petuskey, W. T.; McMillan, P. F. Mechanical Properties of Titanium Nitride Nanocomposites Produced by Chemical Precursor Synthesis Followed by High-P,T Treatment. Mater. Basel Switz. 2011, 4 (10), 1747–1762. https://doi.org/10.3390/ma4101747. (41) Sekine, T.; He, H.; Kobayashi, T.; Zhang, M.; Xu, F. Shock-Induced Transformation of β-Si3N4 to a High-Pressure Cubic-Spinel Phase. Appl. Phys. Lett. 2000, 76 (25), 3706–3708. https://doi.org/10.1063/1.126756. (42) Boyko, T. D.; Hunt, A.; Zerr, A.; Moewes, A. Electronic Structure of Spinel-Type Nitride Compounds Si3N4, Ge3N4, and Sn3N4 with Tunable Band Gaps: Application to Light Emitting Diodes. Phys. Rev. Lett. 2013, 111 (9), 097402. https://doi.org/10.1103/PhysRevLett.111.097402. (43) Xu, M.; Wang, S.; Yin, G.; Li, J.; Zheng, Y.; Chen, L.; Jia, Y. Optical Properties of Cubic Ti3N4, Zr3N4, and Hf3N4. Appl. Phys. Lett. 2006, 89 (15), 151908. https://doi.org/10.1063/1.2360937. (44) Silicon Nitride Rocket Thrusters Test Fired Successfully. https://ntrs.nasa.gov/api/citations/20010060375/downloads/20010060375.pdf (accessed 2021-02-01). (45) Milošev, I.; Strehblow, H.-H.; Navinšek, B. Comparison of TiN, ZrN and CrN Hard Nitride Coatings: Electrochemical and Thermal Oxidation. Thin Solid Films. 1997, 303 (1), 246–254. https://doi.org/10.1016/S0040-6090(97)00069-2. (46) Solovan, M. N.; Brus, V. V.; Maistruk, E. V.; Maryanchuk, P. D. Electrical and Optical Properties of TiN Thin Films. Inorg. Mater. 2014, 50 (1), 40–45. https://doi.org/10.1134/S0020168514010178. (47) Bhadram, V. S.; Liu, H.; Xu, E.; Li, T.; Prakapenka, V. B.; Hrubiak, R.; Lany, S.; Strobel, T. A. Semiconducting Cubic Titanium Nitride in the Th3P4 Structure. Phys. Rev. Mater. 2018, 2 (1), 011602. https://doi.org/10.1103/PhysRevMaterials.2.011602. (48) Webb, D. R.; Sipes, I. G.; Carter, D. E. In Vitro Solubility and in Vivo Toxicity of Gallium Arsenide. Toxicol. Appl. Pharmacol. 1984, 76 (1), 96–104. https://doi.org/10.1016/0041-008x(84)90032-2. (49) Yang, M.; Wang, S. J.; Feng, Y. P.; Peng, G. W.; Sun, Y. Y. Electronic Structure of Germanium Nitride Considered for Gate Dielectrics. J. Appl. Phys. 2007, 102 (1), 013507. https://doi.org/10.1063/1.2747214. (50) Kroll, P. Hafnium Nitride with Thorium Phosphide Structure: Physical Properties and an Assessment of the Hf-N, Zr-N, and Ti-N Phase Diagrams at High Pressures and Temperatures. Phys. Rev. Lett. 2003, 90 (12), 125501. https://doi.org/10.1103/PhysRevLett.90.125501. (51) Ching, W.-Y.; Mo, S.-D.; Ouyang, L.; Rulis, P.; Tanaka, I.; Yoshiya, M. Theoretical Prediction of the Structure and Properties of Cubic Spinel Nitrides. J. Am. Ceram. Soc. 2002, 85 (1), 75–80. https://doi.org/10.1111/j.1151-2916.2002.tb00042.x. (52) Toraya, H. Crystal Structure Refinement of α-Si3N4 Using Synchrotron Radiation Powder Diffraction Data: Unbiased Refinement Strategy. J. Appl. Crystallogr. 2000, 33 (1), 95–102. https://doi.org/10.1107/S0021889899013060. (53) Ching, W. Y.; Rulis, P. Ab Initio Calculation of the Electronic Structure and Spectroscopic Properties of Spinel Γ− Sn3N4. Phys. Rev. B. 2006, 73 (4), 045202. https://doi.org/10.1103/PhysRevB.73.045202. (54) Baur, W. H.; Lerch, M. On Deciding between Space Groups Pnam and Pna21 for the Crystal Structure of Zr3N4. Z. Für Anorg. Allg. Chem. 1996, 622 (10), 1729–1730. https://doi.org/10.1002/zaac.19966221017. (55) Ferreira, L. G.; Marques, M.; Teles, L. K. Approximation to Density Functional Theory for the Calculation of Band Gaps of Semiconductors. Phys. Rev. B. 2008, 78 (12), 125116. https://doi.org/10.1103/PhysRevB.78.125116. (56) Viñes, F.; Lamiel-García, O.; Chul Ko, K.; Yong Lee, J.; Illas, F. Systematic Study of the Effect of HSE Functional Internal Parameters on the Electronic Structure and Band Gap of a Representative Set of Metal Oxides. J. Comput. Chem. 2017, 38 (11), 781–789. https://doi.org/10.1002/jcc.24744. (57) Im, J.; Stoumpos, C. C.; Jin, H.; Freeman, A. J.; Kanatzidis, M. G. Antagonism between Spin–Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1–xPbxI3. J. Phys. Chem. Lett. 2015, 6 (17), 3503–3509. https://doi.org/10.1021/acs.jpclett.5b01738. (58) Museur, L.; Zerr, A.; Kanaev, A. Photoluminescence and Electronic Transitions in Cubic Silicon Nitride. Sci. Rep. 2016, 6 (1), 18523. https://doi.org/10.1038/srep18523. (59) Chu, I.-H.; Kozhevnikov, A.; Schulthess, T. C.; Cheng, H.-P. All-Electron GW Quasiparticle Band Structures of Group 14 Nitride Compounds. J. Chem. Phys. 2014, 141 (4), 044709. https://doi.org/10.1063/1.4890325. (60) Ching, W. Y.; Xu, Y.-N.; Ouyang, L. Electronic and Dielectric Properties of Insulating Zr3N4. Phys. Rev. B. 2002, 66 (23), 235106. https://doi.org/10.1103/PhysRevB.66.235106. (61) Strinati, G.; Mattausch, H. J.; Hanke, W. Dynamical Correlation Effects on the Quasiparticle Bloch States of a Covalent Crystal. Phys. Rev. Lett. 1980, 45 (4), 290–294. https://doi.org/10.1103/PhysRevLett.45.290. (62) Pickett, W. E.; Wang, C. S. Local-Density Approximation for Dynamical Correlation Corrections to Single-Particle Excitations in Insulators. Phys. Rev. B. 1984, 30 (8), 4719–4733. https://doi.org/10.1103/PhysRevB.30.4719. (63) Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X.; Reuter, K.; Scheffler, M. ab initio Molecular Simulations with Numeric Atom-Centered Orbitals. Comput. Phys. Commun. 2009, 180 (11), 2175–2196. https://doi.org/10.1016/j.cpc.2009.06.022. (64) Tang, W.; Sanville, E.; Henkelman, G. A Grid-Based Bader Analysis Algorithm without Lattice Bias. J. Phys. Condens. Matter. 2009, 21 (8), 084204. https://doi.org/10.1088/0953-8984/21/8/084204. (65) Bader, R. F. W.; Nguyen-Dang, T. T. Quantum Theory of Atoms in Molecules–Dalton Revisited. In Advances in Quantum Chemistry; Löwdin, P.-O., Ed.; Academic Press, 1981; Vol. 14, pp 63–124. https://doi.org/10.1016/S0065-3276(08)60326-3. (66) Grimvall, G. Thermophysical Properties of Materials; Elsevier, 1999. https://doi.org/10.1016/B978-044482794-4/50032-2. (67) Murnaghan, F. D. The Compressibility of Media under Extreme Pressures. PNAS. 1944, 30 (9), 244–247. https://doi.org/10.1073/pnas.30.9.244. (68) Bruneval, F.; Gonze, X. Accurate G W Self-Energies in a Plane-Wave Basis Using Only a Few Empty States: Towards Large Systems. Phys. Rev. B. 2008, 78 (8), 085125. https://doi.org/10.1103/PhysRevB.78.085125. (69) Bruneval, F.; Vast, N.; Reining, L. Effect of Self-Consistency on Quasiparticles in Solids. Phys. Rev. B. 2006, 74 (4), 045102. https://doi.org/10.1103/PhysRevB.74.045102. (70) Isseroff, L. Y.; Carter, E. A. Importance of Reference Hamiltonians Containing Exact Exchange for Accurate One-Shot GW Calculations of Cu2O. Phys. Rev. B. 2012, 85 (23), 235142. https://doi.org/10.1103/PhysRevB.85.235142. (71) Rodrigues Pela, R.; Gulans, A.; Draxl, C. The LDA-1/2 Method Implemented in the Exciting Code. Comput. Phys. Commun. 2017, 220, 263–268. https://doi.org/10.1016/j.cpc.2017.07.015. (72) Tao, S. X.; Cao, X.; Bobbert, P. A. Accurate and Efficient Band Gap Predictions of Metal Halide Perovskites Using the DFT-1/2 Method: GW Accuracy with DFT Expense. Sci. Rep. 2017, 7 (1), 14386. https://doi.org/10.1038/s41598-017-14435-4. (73) Slater, J. C.; Johnson, K. H. Self-Consistent-Field Xα Cluster Method for Polyatomic Molecules and Solids. Phys. Rev. B. 1972, 5 (3), 844–853. https://doi.org/10.1103/PhysRevB.5.844. (74) Janak, J. F. Proof That ∂E/∂ni=ε in Density-Functional Theory. Phys. Rev. B. 1978, 18 (12), 7165–7168. https://doi.org/10.1103/PhysRevB.18.7165. (75) Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B. 1981, 23 (10), 5048–5079. https://doi.org/10.1103/PhysRevB.23.5048. (76) Xue, K.-H.; Yuan, J.-H.; Fonseca, L. R. C.; Miao, X.-S. Improved LDA-1/2 Method for Band Structure Calculations in Covalent Semiconductors. Comput. Mater. Sci. 2018, 153, 493–505. https://doi.org/10.1016/j.commatsci.2018.06.036. (77) Gulans, A.; Kontur, S.; Meisenbichler, C.; Nabok, D.; Pavone, P.; Rigamonti, S.; Sagmeister, S.; Werner, U.; Draxl, C. Exciting: A Full-Potential All-Electron Package Implementing Density-Functional Theory and Many-Body Perturbation Theory. J. Phys. Condens. Matter. 2014, 26 (36), 363202. https://doi.org/10.1088/0953-8984/26/36/363202. (78) Zerr, A.; Kempf, M.; Schwarz, M.; Kroke, E.; Göken, M.; Riedel, R. Elastic Moduli and Hardness of Cubic Silicon Nitride. J. Am. Ceram. Soc. 2002, 85 (1), 86–90. https://doi.org/10.1111/j.1151-2916.2002.tb00044.x. (79) Leinenweber, K.; O’keeffe, M.; Somayazulu, M.; Hubert, H.; McMillan, P. F.; Wolf, G. H. Synthesis and Structure Refinement of the Spinel, Γ‐Ge3N4. Chem.-Weinh.-Eur. J.- 1999, 5, 3076–3078. https://doi.org/10.1002/(SICI)1521-3765(19991001)5:10<3076::AID-CHEM3076>3.0.CO;2-D (80) Wang, Z.; Zhao, Y.; Schiferl, D.; Qian, J.; Downs, R. T.; Mao, H.-K.; Sekine, T. Threshold Pressure for Disappearance of Size-Induced Effect in Spinel-Structure Ge3N4 Nanocrystals. J. Phys. Chem. B. 2003, 107 (51), 14151–14153. https://doi.org/10.1021/jp036436t. (81) Shemkunas, M. P.; Petuskey, W. T.; Chizmeshya, A. V. G.; Leinenweber, K.; Wolf, G. H. Hardness, Elasticity, and Fracture Toughness of Polycrystalline Spinel Germanium Nitride and Tin Nitride. J. Mater. Res. 2004, 19 (5), 1392–1399. https://doi.org/10.1557/JMR.2004.0186. (82) Andreas Zerr, I. C. Elasticity of Tin Nitride Having Spinel Structure, Sn3N4, and Hardness of Hypothetical C3N4. Phys. Rev. Lett. 2020. (83) Jayaraman, A.; Batlogg, B.; Maines, R. G.; Bach, H. Effective Ionic Charge and Bulk Modulus Scaling in Rocksalt-Structured Rare-Earth Compounds. Phys. Rev. B. 1982, 26 (6), 3347. https://doi.org/10.1103/PhysRevB.26.3347. (84) Verma, A. S.; Kumar, A. Bulk Modulus of Cubic Perovskites. J. Alloys Compd. 2012, 541, 210–214. https://doi.org/10.1016/j.jallcom.2012.07.027. (85) Jiang, J. Z.; Lindelov, H.; Gerward, L.; Ståhl, K.; Recio, J. M.; Mori-Sanchez, P.; Carlson, S.; Mezouar, M.; Dooryhee, E.; Fitch, A. Compressibility and Thermal Expansion of Cubic Silicon Nitride. Phys. Rev. B. 2002, 65 (16), 161202. https://doi.org/10.1103/PhysRevB.65.161202. (86) Bikowski, A.; Siol, S.; Gu, J.; Holder, A.; Mangum, J. S.; Gorman, B.; Tumas, W.; Lany, S.; Zakutayev, A. Design of Metastable Tin Titanium Nitride Semiconductor Alloys. Chem. Mater. 2017, 29 (15), 6511–6517. https://doi.org/10.1021/acs.chemmater.7b02122. (87) Arca, E.; Lany, S.; Perkins, J. D.; Bartel, C.; Mangum, J.; Sun, W.; Holder, A.; Ceder, G.; Gorman, B.; Teeter, G.; Tumas, W.; Zakutayev, A. Redox-Mediated Stabilization in Zinc Molybdenum Nitrides. J. Am. Chem. Soc. 2018, 140 (12), 4293–4301. https://doi.org/10.1021/jacs.7b12861. (88) Wagler, J.; Böhme, U.; Kroke, E. Higher-Coordinated Molecular Silicon Compounds. In Functional Molecular Silicon Compounds I; Springer, 2013; pp 29–105. https://doi.org/10.1007/430_2013_118. (89) Gellner, M.; Steinigeweg, D.; Ichilmann, S.; Salehi, M.; Schütz, M.; Kömpe, K.; Haase, M.; Schlücker, S. 3D Self‐Assembled Plasmonic Superstructures of Gold Nanospheres: Synthesis and Characterization at the Single‐Particle Level. Small. 2011, 7 (24), 3445–3451. https://doi.org/10.1002/smll.201102009. (90) Kocher, N.; Henn, J.; Gostevskii, B.; Kost, D.; Kalikhman, I.; Engels, B.; Stalke, D. Si− E (E= N, O, F) Bonding in a Hexacoordinated Silicon Complex: New Facts from Experimental and Theoretical Charge Density Studies. J. Am. Chem. Soc. 2004, 126 (17), 5563–5568. https://doi.org/10.1021/ja038459r. (91) Cruickshank, D. W. J. A Reassessment of Dπ—Pπ Bonding in the Tetrahedral Oxyanions of Second-Row Atoms. J. Mol. Struct. 1985, 130 (1–2), 177–191. https://doi.org/10.1016/0022-2860(85)85032-8. (92) Garvie, L. A. J.; Rez, P.; Alvarez, J. R.; Buseck, P. R.; Craven, A. J.; Brydson, R. Bonding in Alpha-Quartz (SiO2): A View of the Unoccupied States. Am. Mineral. 2000, 85 (5–6), 732–738. https://doi.org/10.2138/am-2000-5-611. (93) Wang, Y.; Chen, M.; Xie, Y.; Wei, P.; Schaefer, H. F.; Schleyer, P. von R.; Robinson, G. H. Stabilization of Elusive Silicon Oxides. Nat. Chem. 2015, 7 (6), 509–513. https://doi.org/10.1038/nchem.2234. (94) Gibbs, G. V.; Downs, J. W.; Boisen Jr, M. B. The Elusive SiO Bond in Silica; De Gruyter, 1994; Vol. 29. pp 331-368 https://doi.org/10.1515/9781501509698 (95) Pierrefixe, S. C.; Fonseca Guerra, C.; Bickelhaupt, F. M. Hypervalent Silicon versus Carbon: Ball‐in‐a‐Box Model. Chem. Eur. J. 2008, 14 (3), 819–828. https://doi.org/10.1002/chem.200701252. (96) Chelikowsky, J. R.; Schlüter, M. Electron States in α-Quartz: A Self-Consistent Pseudopotential Calculation. Phys. Rev. B. 1977, 15 (8), 4020. https://doi.org/10.1103/PhysRevB.15.4020. (97) Calabrese, E.; Fowler, W. B. Electronic Energy-Band Structure of \ensuremath{\alpha} Quartz. Phys. Rev. B. 1978, 18 (6), 2888–2896. https://doi.org/10.1103/PhysRevB.18.2888. (98) Q Wiech. Soft X-Ray Band Spectra and the Electronic Structure of Metals and Materials; Fabian, D. J., Series Ed.; Academic Press, 1968. (99) Hu, H.; Peslherbe, G. H. Accurate Mechanical and Electronic Properties of Spinel Nitrides from Density Functional Theory. J. Phys. Chem. C. 2021, 125 (17), 8927–8937. https://doi.org/10.1021/acs.jpcc.0c09896. (100) Nielsen, O. H.; Martin, R. M. Quantum-Mechanical Theory of Stress and Force. Phys. Rev. B. 1985, 32 (6), 3780–3791. https://doi.org/10.1103/PhysRevB.32.3780. (101) Zener, C. M.; Siegel, S. Elasticity and Anelasticity of Metals. J. Phys. Chem. 1949, 53 (9), 1468–1468. https://doi.org/10.1021/j150474a017. (102) Garza, A. J.; Scuseria, G. E. Predicting Band Gaps with Hybrid Density Functionals. J. Phys. Chem. Lett. 2016, 7 (20), 4165–4170. https://doi.org/10.1021/acs.jpclett.6b01807. (103) Hedin, L. On Correlation Effects in Electron Spectroscopies and the GW Approximation. J. Phys. Condens. Matter. 1999, 11 (42), R489–R528. https://doi.org/10.1088/0953-8984/11/42/201. (104) Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110 (13), 6158–6170. https://doi.org/10.1063/1.478522. (105) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120 (1), 215–241. https://doi.org/10.1007/s00214-007-0310-x. (106) Gonze, X.; Amadon, B.; Antonius, G.; Arnardi, F.; Baguet, L.; Beuken, J.-M.; Bieder, J.; Bottin, F.; Bouchet, J.; Bousquet, E.; et al. The Abinit project: Impact, Environment and Recent Developments. Comput. Phys. Commun. 2020, 248, 107042. https://doi.org/10.1016/j.cpc.2019.107042. (107) Troullier, N.; Martins, J. L. Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B. 1991, 43 (3), 1993–2006. https://doi.org/10.1103/PhysRevB.43.1993. (108) Reining, L. The GW Approximation: Content, Successes and Limitations. WIREs Comput. Mol. Sci. 2018, 8 (3), e1344. https://doi.org/10.1002/wcms.1344. (109) Hybertsen, M. S.; Louie, S. G. First-Principles Theory of Quasiparticles: Calculation of Band Gaps in Semiconductors and Insulators. Phys. Rev. Lett. 1985, 55 (13), 1418–1421. https://doi.org/10.1103/PhysRevLett.55.1418. (110) Klier, K.; Spirko, J. A.; Landskron, K. M. Optical Absorption Anisotropy of High-Density, Wide-Gap, High-Hardness SiO2 Polymorphs Seifertite, Stishovite, and Coesite. Am. Mineral. 2015, 100 (1), 120–129. https://doi.org/doi:10.2138/am-2015-4890. (111) Vella, E.; Messina, F.; Cannas, M.; Boscaino, R. Unraveling Exciton Dynamics in Amorphous Silicon Dioxide: Interpretation of the Optical Features from 8 to 11 EV. Phys. Rev. B. 2011, 83 (17), 174201. https://doi.org/10.1103/PhysRevB.83.174201. (112) Astašauskas, V.; Bellissimo, A.; Kuksa, P.; Tomastik, C.; Kalbe, H.; Werner, W. S. M. Optical and Electronic Properties of Amorphous Silicon Dioxide by Single and Double Electron Spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2020, 241, 146829. https://doi.org/10.1016/j.elspec.2019.02.008. (113) Nekrashevich, S. S.; Gritsenko, V. A. Electronic Structure of Silicon Dioxide (a Review). Phys. Solid State. 2014, 56 (2), 207–222. https://doi.org/10.1134/S106378341402022X. (114) Dawson, D. M.; Moran, R. F.; Ashbrook, S. E. An NMR Crystallographic Investigation of the Relationships between the Crystal Structure and 29Si Isotropic Chemical Shift in Silica Zeolites. J. Phys. Chem. C. 2017, 121 (28), 15198–15210. https://doi.org/10.1021/acs.jpcc.7b03730. (115) Janes, Nathan.; Oldfield, Eric. Oxygen-17 NMR Study of Bonding in Silicates: The d-Orbital Controversy. J. Am. Chem. Soc. 1986, 108 (19), 5743–5753. https://doi.org/10.1021/ja00279a014. (116) Yashima, M.; Ando, Y.; Tabira, Y. Crystal Structure and Electron Density of α-Silicon Nitride: Experimental and Theoretical Evidence for the Covalent Bonding and Charge Transfer. J. Phys. Chem. B. 2007, 111 (14), 3609–3613. https://doi.org/10.1021/jp0678507. (117) Kiefer, B.; Shieh, S. R.; Duffy, T. S.; Sekine, T. Strength, Elasticity, and Equation of State of the Nanocrystalline Cubic Silicon Nitride Γ− Si3N4 to 68 GPa. Phys. Rev. B 2005, 72 (1), 014102. https://doi.org/10.1103/PhysRevB.72.014102. (118) Reshak, A. H.; Khan, S. A.; Auluck, S. Electronic Band Structure and Specific Features of AA- and AB-Stacking of Carbon Nitride (C3N4): DFT Calculation. RSC Adv. 2014, 4 (14), 6957–6964. https://doi.org/10.1039/C3RA47130F. (119) Wei, Q.; Zhang, Q.; Yan, H.; Zhang, M. Cubic C3N: A New Superhard Phase of Carbon-Rich Nitride. Materials. 2016, 9 (10), 840. https://doi.org/10.3390/ma9100840. (120) Manjo, T.; Kitou, S.; Katayama, N.; Nakamura, S.; Katsufuji, T.; Nii, Y.; Arima, T.; Nasu, J.; Hasegawa, T.; Sugimoto, K.; Ishikawa, D.; Baron, A. Q. R.; Sawa, H. Do Electron Distributions with Orbital Degree of Freedom Exhibit Anisotropy? Mater. Adv. 2022, 3 (7), 3192–3198. https://doi.org/10.1039/D1MA01113H. (121) Kaupp, M.; Schleyer, P. v. R.; Stoll, H.; Preuss, H. Pseudopotential Approaches to Ca, Sr, and Ba Hydrides. Why Are Some Alkaline Earth MX2 Compounds Bent? J. Chem. Phys. 1991, 94 (2), 1360–1366. https://doi.org/10.1063/1.459993. (122) von Szentpály, L. Hard Bends Soft:  Bond Angle and Bending Force Constant Predictions for Dihalides, Dihydrides, and Dilithides of Groups 2 and 12. J. Phys. Chem. A. 2002, 106 (49), 11945–11949. https://doi.org/10.1021/jp026658b. (123) Hassett, D. M.; Marsden, C. J. The Influence of d Orbitals on the Shape of Monomeric CaF2. J. Chem. Soc. Chem. Commun. 1990, No. 9, 667–669. https://doi.org/10.1039/C39900000667. (124) Kim, D. Y.; Scheicher, R. H.; Lebègue, S.; Prasongkit, J.; Arnaud, B.; Alouani, M.; Ahuja, R. Crystal Structure of the Pressure-Induced Metallic Phase of SiH4 from ab initio theory. PNAS. 2008, 105 (43), 16454–16459. https://doi.org/10.1073/pnas.0804148105. (125) Eremets, M. I.; Trojan, I. A.; Medvedev, S. A.; Tse, J. S.; Yao, Y. Superconductivity in Hydrogen Dominant Materials: Silane. Science. 2008, 319 (5869), 1506–1509. https://doi.org/10.1126/science.1153282. (126) Yao, Y.; Tse, J. S.; Ma, Y.; Tanaka, K. Superconductivity in High-Pressure SiH4. EPL Europhys. Lett. 2007, 78 (3), 37003. https://doi.org/10.1209/0295-5075/78/37003. (127) Zhu, W.; Zhang, X.; Zhu, W.; Xiao, H. Density Functional Theory Studies of Hydrostatic Compression of Crystalline Ammonium Perchlorate. Phys. Chem. Chem. Phys. 2008, 10 (48), 7318–7323. https://doi.org/10.1039/B810525A. (128) Lee, B.; Lee, G. W. A Liquid-Liquid Transition Can Exist in Monatomic Transition Metals with a Positive Melting Slope. Sci. Rep. 2016, 6 (1), 35564. https://doi.org/10.1038/srep35564. (129) Zhang, L.; Wang, Y.; Lv, J.; Ma, Y. Materials Discovery at High Pressures. Nat. Rev. Mater. 2017, 2 (4), 1–16. https://doi.org/10.1038/natrevmats.2017.5. (130) Mujica, A.; Rubio, A.; Muñoz, A.; Needs, R. J. High-Pressure Phases of Group-IV, III--V, and II--VI Compounds. Rev. Mod. Phys. 2003, 75 (3), 863–912. https://doi.org/10.1103/RevModPhys.75.863. (131) Venkataraman, A.; Amadi, E. V.; Chen, Y.; Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 2019, 14 (1), 220. https://doi.org/10.1186/s11671-019-3046-3. (132) Niyogi, S.; Hamon, M. A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M. E.; Haddon, R. C. Chemistry of Single-Walled Carbon Nanotubes. Acc. Chem. Res. 2002, 35 (12), 1105–1113. https://doi.org/10.1021/ar010155r. (133) Lolli, G.; Zhang, L.; Balzano, L.; Sakulchaicharoen, N.; Tan, Y.; Resasco, D. E. Tailoring (n,m) Structure of Single-Walled Carbon Nanotubes by Modifying Reaction Conditions and the Nature of the Support of CoMo Catalysts. J. Phys. Chem. B. 2006, 110 (5), 2108–2115. https://doi.org/10.1021/jp056095e. (134) Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron Nitride Nanotubes. Science 1995, 269 (5226), 966–967. https://doi.org/10.1126/science.269.5226.966. (135) Wang, J.; Huei Lee, C.; Khin Yap, Y. Recent Advancements in Boron Nitride Nanotubes. Nanoscale. 2010, 2 (10), 2028–2034. https://doi.org/10.1039/C0NR00335B. (136) Kalay, S.; Yilmaz, Z.; Sen, O.; Emanet, M.; Kazanc, E.; Çulha, M. Synthesis of Boron Nitride Nanotubes and Their Applications. Beilstein J. Nanotechnol. 2015, 6 (1), 84–102. https://doi.org/10.3762/bjnano.6.9. (137) Kim, K. S.; Kim, M. J.; Park, C.; Fay, C. C.; Chu, S.-H.; Kingston, C. T.; Simard, B. Scalable Manufacturing of Boron Nitride Nanotubes and Their Assemblies: A Review. Semicond. Sci. Technol. 2016, 32 (1), 013003. https://doi.org/10.1088/0268-1242/32/1/013003. (138) Xu, T.; Zhang, K.; Cai, Q.; Wang, N.; Wu, L.; He, Q.; Wang, H.; Zhang, Y.; Xie, Y.; Yao, Y.; Chen, Y. Advances in Synthesis and Applications of Boron Nitride Nanotubes: A Review. Chem. Eng. J. 2022, 431, 134118. https://doi.org/10.1016/j.cej.2021.134118. (139) Spencer, M. J. S. Gas Sensing Applications of 1D-Nanostructured Zinc Oxide: Insights from Density Functional Theory Calculations. Prog. Mater. Sci. 2012, 57 (3), 437–486. https://doi.org/10.1016/j.pmatsci.2011.06.001. (140) Yu, K.; Zhang, Y. S.; Xu, F.; Li, Q.; Zhu, Z. Q.; Wan, Q. Significant Improvement of Field Emission by Depositing Zinc Oxide Nanostructures on Screen-Printed Carbon Nanotube Films. Appl. Phys. Lett. 2006, 88 (15), 153123. https://doi.org/10.1063/1.2195115. (141) Wei, A.; Sun, X. W.; Xu, C. X.; Dong, Z. L.; Yu, M. B.; Huang, W. Stable Field Emission from Hydrothermally Grown ZnO Nanotubes. Appl. Phys. Lett. 2006, 88 (21), 213102. https://doi.org/10.1063/1.2206249. (142) Hu, J. Q.; Li, Q.; Meng, X. M.; Lee, C. S.; Lee, S. T. Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes. Chem. Mater. 2003, 15 (1), 305–308. https://doi.org/10.1021/cm020649y. (143) Wu, G. S.; Xie, T.; Yuan, X. Y.; Li, Y.; Yang, L.; Xiao, Y. H.; Zhang, L. D. Controlled Synthesis of ZnO Nanowires or Nanotubes via Sol–Gel Template Process. Solid State Commun. 2005, 134 (7), 485–489. https://doi.org/10.1016/j.ssc.2005.02.015. (144) Li, T. M.; Lin, Z. A.; Zhang, L.; Chen, G. Controllable Preferential-Etching Synthesis of ZnO Nanotube Arrays on SiO2 Substrate for Solid-Phase Microextraction. Analyst. 2010, 135 (10), 2694–2699. https://doi.org/10.1039/C0AN00169D. (145) Kong, X. Y.; Ding, Y.; Wang, Z. L. Metal−Semiconductor Zn−ZnO Core−Shell Nanobelts and Nanotubes. J. Phys. Chem. B 2004, 108 (2), 570–574. https://doi.org/10.1021/jp036993f. (146) Xu, W. Z.; Ye, Z. Z.; Ma, D. W.; Lu, H. M.; Zhu, L. P.; Zhao, B. H.; Yang, X. D.; Xu, Z. Y. Quasi-Aligned ZnO Nanotubes Grown on Si Substrates. Appl. Phys. Lett. 2005, 87 (9), 093110. https://doi.org/10.1063/1.2035868. (147) Özgür, Ü.; Alivov, Ya. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 2005, 98 (4), 041301. https://doi.org/10.1063/1.1992666. (148) Özgür, Ü.; Hofstetter, D.; Morkoç, H. ZnO Devices and Applications: A Review of Current Status and Future Prospects. Proc. IEEE. 2010, 98 (7), 1255–1268. https://doi.org/10.1109/JPROC.2010.2044550. (149) Wang, B.; Nagase, S.; Zhao, J.; Wang, G. The Stability and Electronic Structure of Single-Walled ZnO Nanotubes by Density Functional Theory. Nanotechnology. 2007, 18 (34), 345706. https://doi.org/10.1088/0957-4484/18/34/345706. (150) Marana, N. L.; Albuquerque, A. R.; La Porta, F. A.; Longo, E.; Sambrano, J. R. Periodic Density Functional Theory Study of Structural and Electronic Properties of Single-Walled Zinc Oxide and Carbon Nanotubes. J. Solid State Chem. 2016, 237, 36–47. https://doi.org/10.1016/j.jssc.2016.01.017. (151) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter. 2009, 21 (39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502. (152) Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. Advanced Capabilities for Materials Modelling with Quantum ESPRESSO. J. Phys. Condens. Matter .2017, 29 (46), 465901. https://doi.org/10.1088/1361-648X/aa8f79. (153) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865. (154) Malcıoğlu, O. B.; Gebauer, R.; Rocca, D.; Baroni, S. TurboTDDFT – A Code for the Simulation of Molecular Spectra Using the Liouville–Lanczos Approach to Time-Dependent Density-Functional Perturbation Theory. Comput. Phys. Commun. 2011, 182 (8), 1744–1754. https://doi.org/10.1016/j.cpc.2011.04.020. (155) Karzel, H.; Potzel, W.; Köfferlein, M.; Schiessl, W.; Steiner, M.; Hiller, U.; Kalvius, G. M.; Mitchell, D. W.; Das, T. P.; Blaha, P. Lattice Dynamics and Hyperfine Interactions in ZnO and ZnSe at High External Pressures. Phys. Rev. B 1996, 53 (17), 11425–11438. https://doi.org/10.1103/PhysRevB.53.11425. (156) Edvinsson, T. Optical Quantum Confinement and Photocatalytic Properties in Two-, One- and Zero-Dimensional Nanostructures. R. Soc. Open Sci. 5 (9), 180387. https://doi.org/10.1098/rsos.180387. (157) Dag, S.; Wang, S.; Wang, L.-W. Large Surface Dipole Moments in ZnO Nanorods. Nano Lett. 2011, 11 (6), 2348–2352. https://doi.org/10.1021/nl200647e. (158) Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. Science. 2002, 298 (5602), 2361–2366. https://doi.org/10.1126/science.1078727. (159) Giustino, F. Electron-Phonon Interactions from First Principles. Rev. Mod. Phys. 2017, 89 (1), 015003. https://doi.org/10.1103/RevModPhys.89.015003. (160) Kim, K.; Lambrecht, W. R. L.; Segall, B. Electronic Structure of GaN with Strain and Phonon Distortions. Phys. Rev. B. 1994, 50 (3), 1502–1505. https://doi.org/10.1103/PhysRevB.50.1502. (161) Mingo, N. Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations. Phys. Rev. B. 2003, 68 (11), 113308. https://doi.org/10.1103/PhysRevB.68.113308. (162) Sakurai, J. J. (Jun J., 1933-1982. Modern Quantum Mechanics : Revised Edition, First impression, 2006.; Pearson Education: Delhi, India, 2006. (163) Englman, R. The Jahn-Teller Effect in Molecules and Crystals; Interscience Monographs and Texts in Physics and Astronomy; Wiley-Interscience, 1972. (164) Ziaeepour, H. Symmetry as a Foundational Concept in Quantum Mechanics. J. Phys. Conf. Ser. 2015, 626, 012074. https://doi.org/10.1088/1742-6596/626/1/012074. (165) Kogan, E. Symmetry Classification of Energy Bands in Graphene and Silicene. Graphene. 2013, 2 (2), 74–80. https://doi.org/10.4236/graphene.2013.22011. (166) Jahn, H. A.; Teller, E.; Donnan, F. G. Stability of Polyatomic Molecules in Degenerate Electronic States - I—Orbital Degeneracy. Proc. R. Soc. Lond. Ser. - Math. Phys. Sci. 1937, 161 (905), 220–235. https://doi.org/10.1098/rspa.1937.0142. (167) Gabovich, A. M.; Voitenko, A. I.; Ekino, T.; Li, M. S.; Szymczak, H.; Pekala, M. Competition of Superconductivity and Charge Density Waves in Cuprates: Recent Evidence and Interpretation. Adv. Condens. Matter Phys. Online. 2010, 2010 (2010), 40. (168) Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Theory of Superconductivity. Phys. Rev. 1957, 108 (5), 1175–1204. https://doi.org/10.1103/PhysRev.108.1175. (169) Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Microscopic Theory of Superconductivity. Phys. Rev. 1957, 106 (1), 162–164. https://doi.org/10.1103/PhysRev.106.162. (170) Bozin, E. S.; Yin, W. G.; Koch, R. J.; Abeykoon, M.; Hor, Y. S.; Zheng, H.; Lei, H. C.; Petrovic, C.; Mitchell, J. F.; Billinge, S. J. L. Local Orbital Degeneracy Lifting as a Precursor to an Orbital-Selective Peierls Transition. Nat. Commun. 2019, 10 (1), 3638. https://doi.org/10.1038/s41467-019-11372-w. (171) Engelbrecht, J. R.; Randeria, M.; Sáde Melo, C. A. R. BCS to Bose Crossover: Broken-Symmetry State. Phys. Rev. B. 1997, 55 (22), 15153–15156. https://doi.org/10.1103/PhysRevB.55.15153. (172) Coleman, P. Mixed Valence as an Almost Broken Symmetry. Phys. Rev. B. 1987, 35 (10), 5072–5116. https://doi.org/10.1103/PhysRevB.35.5072. (173) Sinnecker, S.; Neese, F.; Lubitz, W. Dimanganese Catalase—Spectroscopic Parameters from Broken-Symmetry Density Functional Theory of the Superoxidized MnIII/MnIV State. JBIC J. Biol. Inorg. Chem. 2005, 10 (3), 231–238. https://doi.org/10.1007/s00775-005-0633-9. (174) Khomskii, D. I. Transition Metal Compounds; Cambridge University Press: Cambridge, 2014. https://doi.org/10.1017/CBO9781139096782. (175) Volovich, I. V.; Kozyrev, S. V. Manipulation of States of a Degenerate Quantum System. Proc. Steklov Inst. Math. 2016, 294 (1), 241–251. https://doi.org/10.1134/S008154381606016X. (176) Weng, H.; Fang, C.; Fang, Z.; Dai, X. Topological Semimetals with Triply Degenerate Nodal Points in θ-phase Tantalum Nitride. Phys. Rev. B. 2016, 93 (24), 241202. https://doi.org/10.1103/PhysRevB.93.241202. (177) Hong, J.; Lee, C.; Park, J.-S.; Shim, J. H. Control of Valley Degeneracy in MoS2 by Layer Thickness and Electric Field and Its Effect on Thermoelectric Properties. Phys. Rev. B. 2016, 93 (3), 035445. https://doi.org/10.1103/PhysRevB.93.035445. (178) McIntosh, H. V. On Accidental Degeneracy in Classical and Quantum Mechanics. Am. J. Phys. 1959, 27 (9), 620–625. https://doi.org/10.1119/1.1934944. (179) Gillet, Y.; Kontur, S.; Giantomassi, M.; Draxl, C.; Gonze, X. ab initio Approach to Second-Order Resonant Raman Scattering Including Exciton-Phonon Interaction. Sci. Rep. 2017, 7 (1), 7344. https://doi.org/10.1038/s41598-017-07682-y. (180) Duffy, T. S.; Smith, R. F. Ultra-High Pressure Dynamic Compression of Geological Materials. Front. Earth Sci. 2019, 7 (23). https://doi.org/10.3389/feart.2019.00023. (181) La Lone, B. M.; Asimow, P. D.; Fat’yanov, O. V.; Hixson, R. S.; Stevens, G. D.; Turley, W. D.; Veeser, L. R. High-Pressure Melt Curve of Shock-Compressed Tin Measured Using Pyrometry and Reflectance Techniques. J. Appl. Phys. 2019, 126 (22), 225103. https://doi.org/10.1063/1.5132318. (182) Funk, D.; Gray, R.; Germann, T.; Martineau, R. A Summary Report on the 21st Century Needs and Challenges of Compression Science Workshop; LA-UR 09-07771; Santa Fe, NM, 2009. (183) Fedotenko, T.; Dubrovinsky, L.; Aprilis, G.; Koemets, E.; Snigirev, A.; Snigireva, I.; Barannikov, A.; Ershov, P.; Cova, F.; Hanfland, M.; Dubrovinskaia, N. Laser Heating Setup for Diamond Anvil Cells for in Situ Synchrotron and in House High and Ultra-High Pressure Studies. Rev. Sci. Instrum. 2019, 90 (10), 104501. https://doi.org/10.1063/1.5117786. (184) Lazor, P.; Shen, G.; Saxena, S. K. Laser-Heated Diamond Anvil Cell Experiments at High Pressure: Melting Curve of Nickel up to 700 Kbar. Phys. Chem. Miner. 1993, 20 (2), 86–90. https://doi.org/10.1007/BF00207200. (185) Hrubiak, R.; Sinogeikin, S.; Rod, E.; Shen, G. The Laser Micro-Machining System for Diamond Anvil Cell Experiments and General Precision Machining Applications at the High Pressure Collaborative Access Team. Rev. Sci. Instrum. 2015, 86 (7), 072202. https://doi.org/10.1063/1.4926889. (186) Kuzovnikov, M. A.; Tkacz, M.; Meng, H.; Kapustin, D. I.; Kulakov, V. I. High-Pressure Synthesis of Tantalum Dihydride. Phys. Rev. B. 2017, 96 (13), 134120. https://doi.org/10.1103/PhysRevB.96.134120. (187) Mattesini, M.; De Almeida, J. S.; Dubrovinsky, L.; Dubrovinskaia, N.; Johansson, B.; Ahuja, R. High-Pressure and High-Temperature Synthesis of the Cubic TiO2 Polymorph. Phys. Rev. B. 2004, 70 (21), 212101. https://doi.org/10.1103/PhysRevB.70.212101. (188) Duvall, G. E.; Graham, R. A. Phase Transitions under Shock-Wave Loading. Rev. Mod. Phys. 1977, 49 (3), 523–579. https://doi.org/10.1103/RevModPhys.49.523. (189) Graham, R. A. Solids Under High-Pressure Shock Compression: Mechanics, Physics, and Chemistry. In Shock Wave and High Pressure Phenomena; Springer New York, 2012; pp 15-52. https://doi.org/10.1007/978-1-4613-9278-1 (190) Shteinberg, A. S.; Lin, Y.-C.; Son, S. F.; Mukasyan, A. S. Kinetics of High Temperature Reaction in Ni-Al System: Influence of Mechanical Activation. J. Phys. Chem. A. 2010, 114 (20), 6111–6116. https://doi.org/10.1021/jp1018586. (191) Zel’dovich, Y. B.; Raizer, Y. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Dover Books on Physics; Dover Publications, 1967. (192) Dremin, A. N. Toward Detonation Theory: Shock Wave and High Pressure Phenomena; Springer New York, 1999. (193) Tarver, C. M.; Forbes, J. W.; Urtiew, P. A. Nonequilibrium Zeldovich-von Neumann-Doring Theory and Reactive Flow Modeling of Detonation. Russ. J. Phys. Chem. B 2007, 1 (1), 39–45. https://doi.org/10.1134/S1990793107010058. (194) Tokmakoff, A.; Fayer, M. D.; Dlott, D. D. Chemical Reaction Initiation and Hot-Spot Formation in Shocked Energetic Molecular Materials. J. Phys. Chem. 1993, 97 (9), 1901–1913. https://doi.org/10.1021/j100111a031. (195) Ellgen, P. C. Thermodynamics and Chemical Equilibrium; Create space Independent Pub, 2014. (196) Batsanov, S. S. Effects of Explosions on Materials: Modification and Synthesis Under High-Pressure Shock Compression; Springer New York, 2013. (197) Monserrat, B. Electron–Phonon Coupling from Finite Differences. J. Phys. Condens. Matter. 2018, 30 (8), 083001. https://doi.org/10.1088/1361-648x/aaa737. (198) Ziman, J. M. Principles of the Theory of Solids; Cambridge university press, 1972. (199) Dub, S. N.; Petrusha, I. A. Mechanical Properties of Polycrystalline CBN Obtained from Pyrolytic GBN by Direct Transformation Technique. High Press. Res. 2006, 26 (2), 71–77. https://doi.org/10.1080/08957950600764239. (200) Killelea, D. R.; Utz, A. L. On the Origin of Mode- and Bond-Selectivity in Vibrationally Mediated Reactions on Surfaces. Phys. Chem. Chem. Phys. 2013, 15 (47), 20545–20554. https://doi.org/10.1039/C3CP53765J. (201) Guo, H.; Jackson, B. Mode-Selective Chemistry on Metal Surfaces: The Dissociative Chemisorption of CH4 on Pt(111). J. Chem. Phys. 2016, 144 (18), 184709. https://doi.org/10.1063/1.4948941. (202) Bohr, N. Über Die Anwendung Der Quantentheorie Auf Den Atombau. Z. Für Phys. 1923, 13 (1), 117–165. https://doi.org/10.1007/BF01328209. (203) Bohr, N. The Quantum Postulate and the Recent Development of Atomic Theory. Nature 1928, 121 (3050), 580–590. https://doi.org/10.1038/121580a0. (204) Atkins, P.; de Paula, J.; Friedman, R. Quanta, Matter, and Change: A Molecular Approach to Physical Chemistry; OUP Oxford, 2009. (205) Mccaw, C. S. Orbitals: With Applications In Atomic Spectra; World Scientific Publishing Company, 2015. (206) Sakurai, J. J.; Napolitano, J. Modern Quantum Mechanics; Cambridge University Press, 2017. (207) Edmonds, A. R. Angular Momentum in Quantum Mechanics; Princeton University Press, 1996. (208) Hollas, J. M. Modern Spectroscopy; Wiley, 1988. (209) Condon, E. U.; Shortley, G. The Theory of Atomic Spectra; Cambridge University Press, 1935. (210) Dunlap, B. I. Three-Center Gaussian-Type-Orbital Integral Evaluation Using Solid Spherical Harmonics. Phys. Rev. A. 1990, 42 (3), 1127–1137. https://doi.org/10.1103/PhysRevA.42.1127. (211) Dunlap, B. I. Angular Momentum in Molecular Quantum Mechanical Integral Evaluation. Comput. Phys. Commun. 2005, 165 (1), 18–36. http://dx.doi.org/10.1016/j.cpc.2004.09.002. (212) Anguang Hu; Nora W. C. Chan; Brett I. Dunlap; Sambe H; Felton R. H. Orbital Angular Momentum Eigenfunctions for Fast and Numerically Stable Evaluations of Closed-Form Pseudopotential Matrix Elements. J. Chem. Phys. 2017, 147 (7), 074102. https://doi.org/10.1063/1.4985874. (213) Hu, A.; Dunlap, B. I. Three-Center Molecular Integrals and Derivatives Using Solid Harmonic Gaussian Orbital and Kohn–Sham Potential Basis Sets. Can. J. Chem. 2013, 91 (9), 907–915. https://doi.org/10.1139/cjc-2012-0485. (214) Dorothea Golze; Niels Benedikter; Marcella Iannuzzi; Jan Wilhelm; Jürg Hutter. Fast Evaluation of Solid Harmonic Gaussian Integrals for Local Resolution-of-the-Identity Methods and Range-Separated Hybrid Functionals. J. Chem. Phys. 2017, 146 (3), 034105. https://doi.org/10.1063/1.4973510. (215) Dunlap, B. I.; Zope, R. R. Efficient Quantum-Chemical Geometry Optimization and the Structure of Large Icosahedral Fullerenes. Chem. Phys. Lett. 2006, 422 (4–6), 451–454. http://dx.doi.org/10.1016/j.cplett.2006.02.100. (216) Matveev, A. V.; Nasluzov, V. A.; Rösch, N. Linear Response Formalism for the Douglas–Kroll–Hess Approach to the Dirac–Kohn–Sham Problem: First- and Second-Order Nuclear Displacement Derivatives of the Energy. Int. J. Quantum Chem. 2007, 107 (15), 3236–3249. https://doi.org/10.1002/qua.21501. (217) Nikodem, A.; Matveev, A. V.; Soini, T. M.; Rösch, N. Load Balancing by Work–Stealing in Quantum Chemistry Calculations: Application to Hybrid Density Functional Methods. Int. J. Quantum Chem. 2014, 114 (12), 813–822. https://doi.org/10.1002/qua.24677. (218) Bacon, D.; Chuang, I. L.; Harrow, A. W. Efficient Quantum Circuits for Schur and Clebsch-Gordan Transforms. Phys. Rev. Lett. 2006, 97 (17), 170502. https://doi.org/10.1103/PhysRevLett.97.170502. (219) Hobson, E. W. The Theory of Spherical and Ellipsoidal Harmonics; Cambridge University Press, 1955. (220) Piecuch, P. On the Addition Theorems for Solid Spherical Harmonics. Rep. Math. Phys. 1986, 24 (2), 187–192. https://doi.org/10.1016/0034-4877(86)90052-2. (221) Sack, R. A. Three‐Dimensional Addition Theorem for Arbitrary Functions Involving Expansions in Spherical Harmonics. J. Math. Phys. 1964, 5 (2), 252–259. https://doi.org/10.1063/1.1704115. (222) Hu, A.; Staufer, M.; Birkenheuer, U.; Igoshine, V.; Rösch, N. Analytical Evaluation of Pseudopotential Matrix Elements with Gaussian-Type Solid Harmonics of Arbitrary Angular Momentum. Int. J. Quantum Chem. 2000, 79 (4), 209–221. https://doi.org/10.1002/1097-461x(2000)79:4<209::aid-qua2>3.0.co;2-j (223) Boys, S. F.; Cook, G. B.; Reeves, C. M.; Shavitt, I. Automatic Fundamental Calculations of Molecular Structure. Nature 1956, 178 (4544), 1207–1209. https://doi.org/10.1038/1781207a0. (224) McMurchie, L. E.; Davidson, E. R. One- and Two-Electron Integrals over Cartesian Gaussian Functions. J. Comput. Phys. 1978, 26 (2), 218–231. http://dx.doi.org/10.1016/0021-9991(78)90092-X. (225) Helgaker, T.; Jorgensen, P.; Olsen, J. Molecular Electronic-Structure Theory; Wiley, 2008. (226) Rösch, N.; Krüger, S.; Nasluzov, V. A.; Matveev, A. V. ParaGauss: The Density Functional Program ParaGauss for Complex Systems in Chemistry. In High Performance Computing in Science and Engineering, Garching 2004; Bode, A., Durst, F., Eds.; Springer: Berlin, Heidelberg, 2005; pp 285–296. https://doi.org/10.1007/3-540-28555-5_25. (227) Clementi, E. Methods and Techniques in Computational Chemistry: METECC, 94th ed.; STEF, 1993; Vol. B: Medium Size System. (228) Deshpande, L. S.; Phillips, K.; Huang, B.; DeLorenzo, R. J. Chronic Behavioral and Cognitive Deficits in a Rat Survival Model of Paraoxon Toxicity. NeuroToxicology 2014, 44, 352–357. https://doi.org/10.1016/j.neuro.2014.08.008. (229) Organophosphates: A Common But Deadly Pesticide. Culture. https://www.nationalgeographic.com/culture/article/130718-organophosphates-pesticides-indian-food-poisoning (accessed 2022-05-18). (230) Project Coast: Apartheid’s Chemical and Biological Warfare Programme | UNIDIR. https://unidir.org/publication/project-coast-apartheids-chemical-and-biological-warfare-programme (accessed 2022-05-18). (231) Nishiwaki, Y.; Maekawa, K.; Ogawa, Y.; Asukai, N.; Minami, M.; Omae, K.; null, null. Effects of Sarin on the Nervous System in Rescue Team Staff Members and Police Officers 3 Years after the Tokyo Subway Sarin Attack. Environ. Health Perspect. 2001, 109 (11), 1169–1173. https://doi.org/10.1289/ehp.011091169. (232) Kumar, D. N.; Rajeshwari, A.; Alex, S. A.; Sahu, M.; Raichur, A. M.; Chandrasekaran, N.; Mukherjee, A. Developing Acetylcholinesterase-Based Inhibition Assay by Modulated Synthesis of Silver Nanoparticles: Applications for Sensing of Organophosphorus Pesticides. RSC Adv. 2015, 5 (76), 61998–62006. https://doi.org/10.1039/C5RA10146H. (233) Schwierking, J. R.; Menzel, L. W.; Menzel, E. R. Organophosphate Nerve Agent Detection with Europium Complexes. Sci. World J. 2004, 4, 948–955. https://doi.org/10.1100/tsw.2004.194. (234) Zhan, S.-W.; Tseng, W.-B.; Tseng, W.-L. Impact of Nanoceria Shape on Degradation of Diethyl Paraoxon: Synthesis, Catalytic Mechanism, and Water Remediation Application. Environ. Res. 2020, 188, 109653. https://doi.org/10.1016/j.envres.2020.109653. (235) Kuhn, D. L.; Zander, Z.; Kulisiewicz, A. M.; Debow, S. M.; Haffey, C.; Fang, H.; Kong, X.-T.; Qian, Y.; Walck, S. D.; Govorov, A. O.; Rao, Y.; Dai, H.-L.; DeLacy, B. G. Fabrication of Anisotropic Silver Nanoplatelets on the Surface of TiO2 Fibers for Enhanced Photocatalysis of a Chemical Warfare Agent Simulant, Methyl Paraoxon. J. Phys. Chem. C. 2019, 123 (32), 19579–19587. https://doi.org/10.1021/acs.jpcc.9b04026. (236) Chronic behavioral and cognitive deficits in a rat survival model of paraoxon toxicity - ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0161813X14001478?via%3Dihub (accessed 2022-05-18). (237) Dale, T. J.; Rebek Jr., J. Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angew. Chem. 2009, 121 (42), 7990–7992. https://doi.org/10.1002/ange.200902820. (238) Kingery, A. F.; Allen, H. E. The Environmental Fate of Organophosphorus Nerve Agents: A Review. Toxicol. Environ. Chem. 1995, 47 (3–4), 155–184. https://doi.org/10.1080/02772249509358137. (239) Hulse, E. J.; Davies, J. O. J.; Simpson, A. J.; Sciuto, A. M.; Eddleston, M. Respiratory Complications of Organophosphorus Nerve Agent and Insecticide Poisoning. Implications for Respiratory and Critical Care. Am. J. Respir. Crit. Care Med. 2014, 190 (12), 1342–1354. https://doi.org/10.1164/rccm.201406-1150CI. (240) Chai, M. K.; Tan, G. H. Validation of a Headspace Solid-Phase Microextraction Procedure with Gas Chromatography-Electron Capture Detection of Pesticide Residues in Fruits and Vegetables. Food Chem. 2009, 117 (3), 561–567. https://doi.org/10.1016/j.foodchem.2009.04.034. (241) Katz, E.; Willner, I. Integrated Nanoparticle–Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angew. Chem. Int. Ed. 2004, 43 (45), 6042–6108. https://doi.org/10.1002/anie.200400651. (242) Makwana, B. A.; Vyas, D. J.; Bhatt, K. D.; Jain, V. K.; Agrawal, Y. K. Highly Stable Antibacterial Silver Nanoparticles as Selective Fluorescent Sensor for Fe3+ Ions. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2015, 134, 73–80. https://doi.org/10.1016/j.saa.2014.05.044. (243) Lee, S.; Xu, H.; Wempner, J.; Xu, H.; Wen, J. Discovery of Gold Nanoparticles in Marcellus Shale. ACS Earth Space Chem. 2021. https://doi.org/10.1021/acsearthspacechem.0c00240. (244) Zhou, X.; Zhou, F.; Liu, H.; Yang, L.; Liu, J. Assembly of Polymer–Gold Nanostructures with High Reproducibility into a Monolayer Film SERS Substrate with 5 Nm Gaps for Pesticide Trace Detection. Analyst. 2013, 138 (19), 5832–5838. https://doi.org/10.1039/C3AN00914A. (245) Li, Z.; Wang, Y.; Ni, Y.; Kokot, S. Unmodified Silver Nanoparticles for Rapid Analysis of the Organophosphorus Pesticide, Dipterex, Often Found in Different Waters. Sens. Actuators B Chem. 2014, 193, 205–211. https://doi.org/10.1016/j.snb.2013.11.096. (246) Li, X.; Cui, H.; Zeng, Z. A Simple Colorimetric and Fluorescent Sensor to Detect Organophosphate Pesticides Based on Adenosine Triphosphate-Modified Gold Nanoparticles. Sensors. 2018, 18 (12), 4302. https://doi.org/10.3390/s18124302. (247) El Alami, A.; Lagarde, F.; Tamer, U.; Baitoul, M.; Daniel, P. Enhanced Raman Spectroscopy Coupled to Chemometrics for Identification and Quantification of Acetylcholinesterase Inhibitors. Vib. Spectrosc. 2016, 87, 27–33. https://doi.org/10.1016/j.vibspec.2016.09.005. (248) Chen, W.; Long, F.; Song, G.; Chen, J.; Peng, S.; Li, P. Rapid and Sensitive Detection of Pesticide Residues Using Dynamic Surface-Enhanced Raman Spectroscopy. J. Raman Spectrosc. 2020, 51 (4), 611–618. https://doi.org/10.1002/jrs.5823. (249) Ma, Y.; Huang, Z.; Li, S.; Zhao, C. Surface-Enhanced Raman Spectroscopy on Self-Assembled Au Nanoparticles Arrays for Pesticides Residues Multiplex Detection under Complex Environment. Nanomater. Basel Switz. 2019, 9 (3), E426. https://doi.org/10.3390/nano9030426. (250) Ma, B.; Li, P.; Yang, L.; Liu, J. Based on Time and Spatial-Resolved SERS Mapping Strategies for Detection of Pesticides. Talanta. 2015, 141, 1–7. https://doi.org/10.1016/j.talanta.2015.03.053. (251) Ma, Y.; Liu, H.; Mao, M.; Meng, J.; Yang, L.; Liu, J. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine. Anal. Chem. 2016, 88 (16), 8145–8151. https://doi.org/10.1021/acs.analchem.6b01884. (252) Yan, X.; Song, Y.; Zhu, C.; Li, H.; Du, D.; Su, X.; Lin, Y. MnO2 Nanosheet-Carbon Dots Sensing Platform for Sensitive Detection of Organophosphorus Pesticides. Anal. Chem. 2018, 90 (4), 2618–2624. https://doi.org/10.1021/acs.analchem.7b04193. (253) Wang, M.; Shi, G.; Zhu, Y.; Wang, Y.; Ma, W. Au-Decorated Dragonfly Wing Bioscaffold Arrays as Flexible Surface-Enhanced Raman Scattering (SERS) Substrate for Simultaneous Determination of Pesticide Residues. Nanomaterials. 2018, 8 (5), 289. https://doi.org/10.3390/nano8050289. (254) Wang, H.; Qu, B.; Liu, H.; Ding, J.; Ren, N. Analysis of Organochlorine Pesticides in Surface Water of the Songhua River Using Magnetoliposomes as Adsorbents Coupled with GC-MS/MS Detection. Sci. Total Environ. 2018, 618, 70–79. https://doi.org/10.1016/j.scitotenv.2017.11.046. (255) Fathi, F.; Lagugné-Labarthet, F.; Pedersen, D. B.; Kraatz, H.-B. Studies of the Interaction of Two Organophosphonates with Nanostructured Silver Surfaces. Analyst. 2012, 137 (19), 4448–4453. https://doi.org/10.1039/C2AN35641D. (256) Liu, H.; Yang, Z.; Meng, L.; Sun, Y.; Wang, J.; Yang, L.; Liu, J.; Tian, Z. Three-Dimensional and Time-Ordered Surface-Enhanced Raman Scattering Hotspot Matrix. J. Am. Chem. Soc. 2014, 136 (14), 5332–5341. https://pubs.acs.org/doi/10.1021/ja501951v (257) Li, P.; Dong, R.; Wu, Y.; Liu, H.; Kong, L.; Yang, L. Polystyrene/Ag Nanoparticles as Dynamic Surface-Enhanced Raman Spectroscopy Substrates for Sensitive Detection of Organophosphorus Pesticides. Talanta. 2014, 127, 269–275. https://doi.org/10.1016/j.talanta.2014.03.075. (258) Weng, S.; Li, M.; Chen, C.; Gao, X.; Zheng, S.; Zeng, X. Fast and Accurate Determination of Organophosphate Pesticides Using Surface-Enhanced Raman Scattering and Chemometrics. Anal. Methods. 2015, 7 (6), 2563–2567. https://doi.org/10.1039/C4AY03067B. (259) Zhao, L.; Deng, C.; Xue, S.; Liu, H.; Hao, L.; Zhu, M. Multifunctional G-C3N4/Ag NPs Intercalated GO Composite Membrane for SERS Detection and Photocatalytic Degradation of Paraoxon-Ethyl. Chem. Eng. J. 2020, 402, 126223. https://doi.org/10.1016/j.cej.2020.126223. (260) Tran, M.; Fallatah, A.; Whale, A.; Padalkar, S. Utilization of Inexpensive Carbon-Based Substrates as Platforms for Sensing. Sensors. 2018, 18 (8), 2444. https://doi.org/10.3390/s18082444. (261) Tran, M.; Roy, S.; Kmiec, S.; Whale, A.; Martin, S.; Sundararajan, S.; Padalkar, S. Formation of Size and Density Controlled Nanostructures by Galvanic Displacement. Nanomaterials. 2020, 10 (4), 644. https://doi.org/10.3390/nano10040644. (262) Makkar, P.; Ghosh, N. N. A Review on the Use of DFT for the Prediction of the Properties of Nanomaterials. RSC Adv. 2021, 11 (45), 27897–27924. https://doi.org/10.1039/D1RA04876G. (263) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. Z. Für Krist. - Cryst. Mater. 2005, 220 (5–6), 567–570. https://doi.org/10.1524/zkri.220.5.567.65075. (264) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865. (265) Sanchez-Portal, D.; Artacho, E.; Soler, J. M. Projection of Plane-Wave Calculations into Atomic Orbitals. Solid State Commun. 1995, 95 (10), 685–690. https://doi.org/10.1016/0038-1098(95)00341-X. (266) Hamann, D. R.; Schlüter, M.; Chiang, C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 1979, 43 (20), 1494–1497. https://doi.org/10.1103/PhysRevLett.43.1494. (267) Miwa, K. Prediction of Raman Spectra with Ultrasoft Pseudopotentials. Phys. Rev. B. 2011, 84 (9), 094304. https://doi.org/10.1103/PhysRevB.84.094304. (268) Porezag, D.; Pederson, M. R. Infrared Intensities and Raman-Scattering Activities within Density-Functional Theory. Phys. Rev. B. 1996, 54 (11), 7830–7836. https://doi.org/10.1103/PhysRevB.54.7830. (269) Liu, H.; Yang, Z.; Meng, L.; Sun, Y.; Wang, J.; Yang, L.; Liu, J.; Tian, Z. Three-Dimensional and Time-Ordered Surface-Enhanced Raman Scattering Hotspot Matrix. J. Am. Chem. Soc. 2014, 136 (14), 5332–5341. https://doi.org/10.1021/ja501951v.