Internet of Things (IoT) has penetrated different aspects of modern life with smart sensors being prevalent within our surrounding indoor environments. Furthermore, dependence on IoT-based Contact Tracing (CT) models has significantly increased mainly due to the COVID-19 pandemic. There is, therefore, an urgent quest to develop/design efficient, autonomous, trustworthy, and secure indoor CT solutions leveraging accurate indoor localization/tracking approaches. In this context, the first objective of this Ph.D. thesis is to enhance accuracy of Bluetooth Low Energy (BLE)-based indoor localization. BLE-based localization is typically performed based on the Received Signal Strength Indicator (RSSI). Extreme fluctuations of the RSSI occurring due to different factors such as multi-path effects and noise, however, prevent the BLE technology to be a reliable solution with acceptable accuracy for dynamic tracking/localization in indoor environments. In this regard, first, an IoT dataset is constructed based on multiple thoroughly separated indoor environments to incorporate the effects of various interferences faced in different spaces. The constructed dataset is then used to develop a Reinforcement Learning (RL)-based information fusion strategy to form a multiple-model implementation consisting of RSSI, Pedestrian dead reckoning (PDR), and Angle-of-Arrival (AoA)-based models. In the second part of the thesis, the focus is devoted to application of multi-agent Deep Neural Networks (DNN) models for indoor tracking. DNN-based approaches are, however, prone to overfitting and high sensitivity to parameter selection, which results in sample inefficiency. Moreover, data labelling is a time-consuming and costly procedure. To address these issues, we leverage Successor Representations (SR)-based techniques, which can learn the expected discounted future state occupancy, and the immediate reward of each state. A Deep Multi-Agent Successor Representation framework is proposed that can adapt quickly to the changes in a multi-agent environment faster than the Model-Free (MF) RL methods and with a lower computational cost compared to Model-Based (MB) RL algorithms. In the third part of the thesis, the developed indoor localization techniques are utilized to design a novel indoor CT solution, referred to as the Trustworthy Blockchain-enabled system for Indoor Contact Tracing (TB-ICT) framework. The TB-ICT is a fully distributed and innovative blockchain platform exploiting the proposed dynamic Proof of Work (dPoW) approach coupled with a Randomized Hash Window (W-Hash) and dynamic Proof of Credit (dPoC) mechanisms.