[1] N. Ahmed and K. Mueller. Gamification as a paradigm for the evaluation of visual analytics systems. In Proceedings of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization, pages 78–86, 2014. [2] B. Alkhaffaf and B. Decadt. 15 years of litigation following laparoscopic cholecystectomy in england. Annals of surgery, 251(4):682–685, 2010. [3] G. Berci, J. Hunter, L. Morgenstern, M. Arregui, M. Brunt, B. Carroll, M. Edye, D. Fermelia, G. Ferzli, F. Greene, et al. Laparoscopic cholecystectomy: first, do no harm; second, take care of bile duct stones, 2013. [4] L. R. Bertrand, M. Abdallah, Y. Espinel, L. Calvet, B. Pereira, E. Ozgur, D. Pezet, E. Buc, and A. Bartoli. A case series study of augmented reality in laparoscopic liver resection with a deformable preoperative model. Surgical endoscopy, 34:5642–5648, 2020. [5] K. Cheng, J. You, S. Wu, Z. Chen, Z. Zhou, J. Guan, B. Peng, and X. Wang. Artificial intelligence-based automated laparoscopic cholecystectomy surgical phase recognition and analysis. Surgical endoscopy, 36(5):3160–3168, 2022. [6] S. Chidambaram, S. Erridge, D. Leff, and S. Purkayastha. A randomized controlled trial of skills transfer: from touch surgery to laparoscopic cholecystectomy. Journal of Surgical Research, 234:217–223, 2019. [7] S. Connor and O. Garden. Bile duct injury in the era of laparoscopic cholecystectomy. British journal of surgery, 93(2):158–168, 2006. 44 [8] N. G. Csikesz, A. Singla, M. M. Murphy, J. F. Tseng, and S. A. Shah. Surgeon volume metrics in laparoscopic cholecystectomy. Digestive diseases and sciences, 55:2398–2405, 2010. [9] S. W. Dekker and T. B. Hugh. Laparoscopic bile duct injury: understanding the psychology and heuristics of the error. ANZ journal of surgery, 78(12):1109–1114, 2008. [10] A. Ejaz, G. Spolverato, Y. Kim, R. Dodson, J. K. Sicklick, H. A. Pitt, K. D. Lillemoe, J. L. Cameron, and T. M. Pawlik. Long-term health-related quality of life after iatrogenic bile duct injury repair. Journal of the American College of Surgeons, 219(5):923–932, 2014. [11] M. El-Beheiry, G. McCreery, and C. M. Schlachta. A serious game skills competition increases voluntary usage and proficiency of a virtual reality laparoscopic simulator during first-year surgical residents’ simulation curriculum. Surgical endoscopy, 31:1643–1650, 2017. [12] K. A. Ericsson. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Academic medicine, 79(10):S70–S81, 2004. [13] E. Evgeniou and P. Loizou. Simulation-based surgical education. ANZ journal of surgery, 83 (9):619–623, 2013. [14] D. R. Flum, A. Cheadle, C. Prela, E. P. Dellinger, and L. Chan. Bile duct injury during cholecystectomy and survival in medicare beneficiaries. Jama, 290(16):2168–2173, 2003. [15] D. R. Flum, E. P. Dellinger, A. Cheadle, L. Chan, and T. Koepsell. Intraoperative cholangiography and risk of common bile duct injury during cholecystectomy. Jama, 289(13):1639–1644, 2003. [16] A. G. Gallagher, E. M. Ritter, H. Champion, G. Higgins, M. P. Fried, G. Moses, C. D. Smith, and R. M. Satava. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Annals of surgery, 241(2):364, 2005. [17] T. Golany, A. Aides, D. Freedman, N. Rabani, Y. Liu, E. Rivlin, G. S. Corrado, Y. Matias, W. Khoury, H. Kashtan, et al. Artificial intelligence for phase recognition in complex laparoscopic cholecystectomy. Surgical Endoscopy, 36(12):9215–9223, 2022. 45 ˜ ´ ¨ [18] M. Graafland, W. A. Bemelman, and M. P. Schijven. Game-based training improves the surgeon’s situational awareness in the operation room: a randomized controlled trial. Surgical endoscopy, 31(10):4093–4101, 2017. [19] J. Guckian, A. Sridhar, and S. Meggitt. Exploring the perspectives of dermatology undergraduates with an escape room game. Clinical and experimental dermatology, 45(2):153–158, 2020. [20] N. Gulaydin. Laparoscopic cholecystectomy by the modified bikini line approach as a simple and safe technique. Revista da Associac¸ao Medica Brasileira, 67:1172–1176, 2021. [21] K. M. Harboe and L. Bardram. The quality of cholecystectomy in denmark: outcome and risk factors for 20,307 patients from the national database. Surgical endoscopy, 25:1630–1641, 2011. [22] M. Hu, D. Wattchow, and D. de Fontgalland. From ancient to avant-garde: A review of traditional and modern multimodal approaches to surgical anatomy education. ANZ journal of surgery, 88(3):146–151, 2018. [23] K.-F. Kowalewski, J. D. Hendrie, M. W. Schmidt, T. Proctor, S. Paul, C. R. Garrow, H. G. Kenngott, B. P. Muller-Stich, and F. Nickel. Validation of the mobile serious game application touch surgery™ for cognitive training and assessment of laparoscopic cholecystectomy. Surgical endoscopy, 31:4058–4066, 2017. [24] S. Laplante, B. Namazi, P. Kiani, D. A. Hashimoto, A. Alseidi, M. Pasten, L. M. Brunt, S. Gill, B. Davis, M. Bloom, et al. Validation of an artificial intelligence platform for the guidance of safe laparoscopic cholecystectomy. Surgical endoscopy, 37(3):2260–2268, 2023. [25] D. E. Litwin and M. A. Cahan. Laparoscopic cholecystectomy. Surgical Clinics of North America, 88(6):1295–1313, 2008. [26] J. Lubikowski, B. Piotuch, A. Stadnik, M. Przedniczek, P. Remiszewski, P. Milkiewicz, M. A. Silva, and M. Wojcicki. Difficult iatrogenic bile duct injuries following different types of 46 upper abdominal surgery: report of three cases and review of literature. BMC surgery, 19(1): 1–9, 2019. [27] A. Madani, M. C. Vassiliou, Y. Watanabe, B. Al-Halabi, M. S. Al-Rowais, D. L. Deckelbaum, G. M. Fried, and L. S. Feldman. What are the principles that guide behaviors in the operating room? Annals of Surgery, 265(2):255–267, 2017. [28] A. Madani, K. Grover, and Y. Watanabe. Measuring and teaching intraoperative decisionmaking using the visual concordance test: deliberate practice of advanced cognitive skills. JAMA surgery, 155(1):78–79, 2020. [29] A. Madani, B. Namazi, M. S. Altieri, D. A. Hashimoto, A. M. Rivera, P. H. Pucher, A. Navarrete-Welton, G. Sankaranarayanan, L. M. Brunt, A. Okrainec, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Annals of surgery, 2022. [30] T. D. Madni, D. E. Leshikar, C. T. Minshall, P. A. Nakonezny, C. C. Cornelius, J. B. Imran, A. T. Clark, B. H. Williams, A. L. Eastman, J. P. Minei, et al. The parkland grading scale for cholecystitis. The American Journal of Surgery, 215(4):625–630, 2018. [31] B. Navez, F. Ungureanu, M. Michiels, D. Claeys, F. Muysoms, C. Hubert, M. Vanderveken, O. Detry, B. Detroz, J. Closset, et al. Surgical management of acute cholecystitis: results of a 2-year prospective multicenter survey in belgium. Surgical endoscopy, 26:2436–2445, 2012. [32] D. Neureiter, E. Klieser, B. Neumayer, P. Winkelmann, R. Urbas, and T. Kiesslich. Feasibility of kahoot! as a real-time assessment tool in (histo-) pathology classroom teaching. Advances in Medical Education and Practice, pages 695–705, 2020. [33] P. Phutane, E. Buc, K. Poirot, E. Ozgur, D. Pezet, A. Bartoli, and B. Le Roy. Preliminary trial of augmented reality performed on a laparoscopic left hepatectomy. Surgical Endoscopy, 32: 514–515, 2018. [34] J. L. Plass, B. D. Homer, and C. K. Kinzer. Foundations of game-based learning. Educational psychologist, 50(4):258–283, 2015. 47 [35] E. Rauws and D. Gouma. Endoscopic and surgical management of bile duct injury after laparoscopic cholecystectomy. Best Practice & Research Clinical Gastroenterology, 18(5): 829–846, 2004. [36] S. Rehman, S. J. Raza, A. P. Stegemann, K. Zeeck, R. Din, A. Llewellyn, L. Dio, M. Trznadel, Y. W. Seo, A. J. Chowriappa, et al. Simulation-based robot-assisted surgical training: a health economic evaluation. International Journal of Surgery, 11(9):841–846, 2013. [37] C. C. Roche, N. P. Wingo, and J. H. Willig. Kaizen: An innovative team learning experience for first-semester nursing students. Journal of Nursing Education, 56(2):124–124, 2017. [38] E. F. Schlegel and N. J. Selfridge. Fun, collaboration and formative assessment: Skinquizition, a class wide gaming competition in a medical school with a large class. Medical teacher, 36 (5):447–449, 2014. [39] C. Schneider, S. Thompson, J. Totz, Y. Song, M. Allam, M. Sodergren, A. Desjardins, D. Barratt, S. Ourselin, K. Gurusamy, et al. Comparison of manual and semi-automatic registration in augmented reality image-guided liver surgery: a clinical feasibility study. Surgical endoscopy, 34:4702–4711, 2020. [40] M. Y. Shah, U. Somasundaram, T. Wilkinson, and N. Wasnik. Feasibility and safety of three-port laparoscopic cholecystectomy compared to four-port laparoscopic cholecystectomy. Cureus, 13(11), 2021. [41] R. Sheppeard, A. Samuels, and P. Davies. i-dermify: does using practical illustration and verbal description in a game format improve recognition and confidence in describing common skin diseases? Clinical and Experimental Dermatology, 45(5):610–611, 2020. [42] D. Stefanidis, P. Montero, D. R. Urbach, A. Qureshi, K. Perry, S. L. Bachman, A. Madan, R. Petersen, and A. D. Pryor. Sages research agenda in gastrointestinal and endoscopic surgery: updated results of a delphi study. Surgical endoscopy, 28(10):2763–2771, 2014. [43] M. D. Szeto, D. Strock, J. Anderson, T. E. Sivesind, V. M. Vorwald, H. R. Rietcheck, G. S. 48 ¨ ¨ Weintraub, and R. P. Dellavalle. Gamification and game-based strategies for dermatology education: Narrative review. JMIR Dermatology, 4(2):e30325, 2021. [44] J. Tulipan, A. Miller, A. G. Park, J. T. Labrum IV, and A. M. Ilyas. Touch surgery: analysis and assessment of validity of a hand surgery simulation “app”. Hand, 14(3):311–316, 2019. [45] M. P. van Ginkel, M. P. Schijven, W. M. van Grevenstein, and H. W. Schreuder. Bimanual fundamentals: validation of a new curriculum for virtual reality training of laparoscopic skills. Surgical Innovation, 27(5):523–533, 2020. [46] R. Ventre, C. Pardoe, S. Singhal, D. Cripps, and J. Hough. Gamification of dermatology: Stud2ybuddy, a novel game to facilitate dermatology revision for final-year medical students. Future Healthc J, 6(Suppl 2):22–22, 2019. [47] T. M. Ward, D. A. Hashimoto, Y. Ban, G. Rosman, and O. R. Meireles. Artificial intelligence prediction of cholecystectomy operative course from automated identification of gallbladder inflammation. Surgical Endoscopy, 36(9):6832–6840, 2022. [48] L. W. Way, L. Stewart, W. Gantert, K. Liu, C. M. Lee, K. Whang, and J. G. Hunter. Causes and prevention of laparoscopic bile duct injuries: analysis of 252 cases from a human factors and cognitive psychology perspective. Annals of surgery, 237(4):460, 2003. [49] L. W. Way, L. Stewart, W. Gantert, K. Liu, C. M. Lee, K. Whang, and J. G. Hunter. Causes and prevention of laparoscopic bile duct injuries: analysis of 252 cases from a human factors and cognitive psychology perspective. Annals of surgery, 237(4):460, 2003. [50] C. Wild, F. Lang, A. Gerhauser, M. Schmidt, K. Kowalewski, J. Petersen, H. Kenngott, B. Muller-Stich, and F. Nickel. Telestration with augmented reality for visual presentation of intraoperative target structures in minimally invasive surgery: a randomized controlled study. Surgical Endoscopy, 36(10):7453–7461, 2022. [51] A. Winkler-Schwartz, R. Yilmaz, N. Mirchi, V. Bissonnette, N. Ledwos, S. Siyar, H. Azarnoush, B. Karlik, and R. Del Maestro. Machine learning identification of surgical and operative factors associated with surgical expertise in virtual reality simulation. JAMA network open, 2(8):e198363–e198363, 2019. [52] T. A. Zwimpfer, C. Wismer, F. Geissler, R. Oehler, J. Geiger, A. Schotzau, B. Fellmann- Fischer, and V. Heinzelmann-Schwarz. Gamification in laparoscopic training: a randomized, controlled study. 2022.