Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using deep learning to detect defects in manufacturing: a comprehensive survey and current challenges. Materials, 13(24), 5755. Mazzoleni, M., Sarda, K., Acernese, A., Russo, L., Manfredi, L., Glielmo, L., & Del Vecchio, C. (2022). A fuzzy logic-based approach for fault diagnosis and condition monitoring of industry 4.0 manufacturing processes. Engineering Applications of Artificial Intelligence, 115, 105317. PHM Society. (2022). Data challenge: 7th european conference of the prognostics and health management society 2022. Retrieved 18.06.2022, from https:// phm-europe.org/data-challenge Vafeiadis, T., Dimitriou, N., Ioannidis, D., Wotherspoon, T., Tinker, G., & Tzovaras, D. (2018). A framework for inspection of dies attachment on PCB utilizing machine learning techniques. Journal of Management Analytics, 5(2), 81-94. Gaber, L., Hussein, A. I., & Moness, M. (2021). Fault Detection based on Deep Learning for Digital VLSI Circuits. Procedia Computer Science, 194, 122-131. Gaber, L., Hussein, A. I., & Moness, M. (2021). Fault detection based on deep learning for digital vlsi circuits. Procedia Computer Science, 194, 122–131. Joseph, L. P., Joseph, E. A., & Prasad, R. (2022). Explainable diabetes classification using hybrid bayesian-optimized tabnet architecture. Computers in Biology and Medicine, 151, 106178. Krieger, V., Wondrak, W., Dehbi, A., Bartel, W., Ousten, Y., & Levrier, B. (2006). Defect detection in multilayer ceramic capacitors. Microelectronics Reliability, 46(9-11), 1926–1931.