[1] D. Miljković, Review of Active Vibration Control. 2009. [2] A. Rasooli, R. Sedaghati, Q. Concordia University (Montréal, and Q. D. of M. Concordia University (Montréal Industrial and Aerospace Engineering., “Fabrication, Characterization and Control of a Novel Magnetorheological Elastomer-based Adaptive Tuned Vibration Absorber,” [Concordia University], [Montréal, Québec], 2021. [Online]. Available: https://spectrum.library.concordia.ca/id/eprint/987877/ [3] N. Hoang, N. Zhang, and H. Du, “An adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction,” Smart Materials and Structures, vol. 20, no. 1, 2011, doi: 10.1088/0964-1726/20/1/015019. [4] Y.-K. Kim, J. H. Koo, K.-S. Kim, and S. H. Kim, “Suppressing harmonic vibrations of a miniature cryogenic cooler using an adaptive tunable vibration absorber based on magneto-rheological elastomers.,” The Review of scientific instruments, vol. 82, no. 3, p. 035103, 2011, doi: 10.1063/1.3553198. [5] U.-C. Jeong, “Application of Adaptive Tuned Magneto-Rheological Elastomer for Vibration Reduction of a Plate by a Variable-Unbalance Excitation,” vol. 10, no. 3934, p. 3934, 2020, doi: 10.3390/app10113934. [6] Y. T. Choi and N. M. Wereley, “Adaptively tunable magnetorheological elastomer-based vibration absorber for a propeller aircraft seat,” vol. 12, no. 3, pp. 035332–035332, 2022, doi: 10.1063/9.0000323. [7] T. Komatsuzaki and Y. Iwata, “Design of a Real-Time Adaptively Tuned Dynamic Vibration Absorber with a Variable Stiffness Property Using Magnetorheological Elastomer,” Shock and Vibration, vol. 2015, p. 676508, Jul. 2015, doi: 10.1155/2015/676508. [8] X. Gu, Y. Yu, Y. Li, J. Li, M. Askari, and B. Samali, “Experimental study of semi-active magnetorheological elastomer base isolation system using optimal neuro fuzzy logic control,” Mechanical Systems and Signal Processing, vol. 119, pp. 380–398, 2019, doi: 10.1016/j.ymssp.2018.10.001. [9] T. Jin et al., “Development and evaluation of a versatile semi-active suspension system for high-speed railway vehicles,” Mechanical Systems and Signal Processing, vol. 135, 2020, doi: 10.1016/j.ymssp.2019.106338. [10] C. Liu, M. Hemmatian, R. Sedaghati, and G. Wen, “Development and Control of Magnetorheological Elastomer-Based Semi-active Seat Suspension Isolator Using Adaptive Neural Network,” vol. 7, 2020, doi: 10.3389/fmats.2020.00171. [11] X. B. Nguyen, H. T. Truong, and T. Komatsuzaki, “Novel semiactive suspension using a magnetorheological elastomer (MRE)-based absorber and adaptive neural network controller for systems with input constraints,” Mechanical Sciences, vol. 11, no. 2, pp. 465–479, 2020, doi: 10.5194/ms-11-465-2020. [12] L.-J. Qian, F.-L. Xin, X.-X. Bai, and N. M. Wereley, “State observation–based control algorithm for dynamic vibration absorbing systems featuring magnetorheological elastomers: Principle and analysis,” Journal of Intelligent Material Systems and Structures, vol. 28, no. 18, pp. 2539–2556, Nov. 2017, doi: 10.1177/1045389X17692047. [13] M. A. Khanouki, R. Sedaghati, and M. Hemmatian, “Multidisciplinary Design Optimization of a Novel Sandwich Beam-Based Adaptive Tuned Vibration Absorber Featuring Magnetorheological Elastomer,” Materials, vol. 13, no. 10, 2020, doi: 10.3390/ma13102261. [14] M. Long, G. L. Hu, and S. L. Wang, “Vibration Response Analysis of MRE Cantilever Sandwich Beam under Non-Homogeneous Magnetic Fields,” Applied Mechanics and Materials, vol. 303–306, pp. 49–52, 2013, doi: 10.4028/www.scientific.net/AMM.303-306.49. [15] B. V. Ramesh, R. Vasudevan, N. B. Kumar, and peer reviewed papers from the 2014 I. M. E. C. (IMEC 2014) Selected June 13-15, 2014, Tamil Nadu, India, “Vibration Analysis of a Laminated Composite Magnetorheological Elastomer Sandwich Beam,” Applied Mechanics and Materials, vol. 592–594, pp. 2097–2101, 2014, doi: 10.4028/www.scientific.net/AMM.592-594.2097. [16] U. Sharif et al., “Dynamic Behavior of Sandwich Structures with Magnetorheological Elastomer: A Review,” vol. 14, no. 7025, p. 7025, 2021, doi: 10.3390/ma14227025. [17] R. Selvaraj and M. Ramamoorthy, “Dynamic analysis of laminated composite sandwich beam containing carbon nanotubes reinforced magnetorheological elastomer,” Journal of Sandwich Structures & Materials, vol. 23, no. 5, pp. 1784–1807, 2021, doi: 10.1177/1099636220905253. [18] K. Wei, G. Meng, W. Zhang, and S. Zhu, “Experimental investigation on vibration characteristics of sandwich beams with magnetorheological elastomers cores,” Journal of Central South University of Technology : Science & Technology of Mining and Metallurgy, vol. 15, no. 1, pp. 239–242, 2008, doi: 10.1007/s11771-008-0354-7. [19] G. Hu, M. Guo, W. Li, H. Du, and G. Alici, “Experimental investigation of the vibration characteristics of a magnetorheological elastomer sandwich beam under non-homogeneous small magnetic fields,” Smart Materials and Structures, vol. 20, no. 12, 2011, doi: 10.1088/0964-1726/20/12/127001. [20] U. R. Poojary, S. Hegde, K. Kiran, and K. V. Gangadharan, “Dynamic response of a MRE sandwich structure under a non-homogenous magnetic field,” Journal of the Korean Physical Society, vol. 79, no. 9, pp. 864–873, 2021, doi: 10.1007/s40042-021-00281-1. [21] T. Soleymani and A. G. Arani, “On aeroelastic stability of a piezo-MRE sandwich plate in supersonic airflow,” Composite Structures, vol. 230, 2019, doi: 10.1016/j.compstruct.2019.111532. [22] S. Bornassi, H. M. Navazi, and H. Haddadpour, “Coupled bending-torsion flutter investigation of MRE tapered sandwich blades in a turbomachinery cascade,” Thin-Walled Structures, vol. 152, 2020, doi: 10.1016/j.tws.2020.106765. [23] W. Brogan, Modern Control Theory, 3rd ed. Upper Saddle River, NJ: Prentice Hall. [24] R. Dorf and R. Bishop, Modern Control Systems, 12th ed. Upple Saddle River, NJ: Prentice Hall, 2011. [25] S. Rao, Mechanical Vibrations, 6th ed. Hoboken, NJ: Pearson Education, Inc., 2017. [26] P. Wirsching, T. Paez, and K. Ortiz, Random Vibrations: Theory and Practice. New York: Dover, 2006. [27] E. Guglielmino, T. Sireteanu, C. Stammers, G. Ghita, and M. Giuclea, Semi-Active Suspension Control: Improved Vehicle Ride and Road Friendliness. Springer-Verlag London Limited, 2008. [28] Z. Shiller, “Off-Line and On-Line Trajectory Planning,” in Mechanisms and Machine Science, vol. 29, 2015, pp. 29–62. doi: 10.1007/978-3-319-14705-5_2. [29] F. Lewis, D. Vrabie, and V. Syrmos, Optimal Control, 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc. [30] D. Karnopp, “Active and Semi-Active Vibration Isolation,” J. Vib. Acoust, vol. 117, no. B, pp. 177–185, 1995, doi: 10.1115/1.2838660. [31] M. VALÁŠEK, M. NOVÁK, Z. ŠIKA, and O. VACULÍN, “Extended Ground-Hook - New Concept of Semi-Active Control of Truck’s Suspension,” Vehicle System Dynamics, vol. 27, no. 5–6, pp. 289–303, Jun. 1997, doi: 10.1080/00423119708969333. [32] S. Rakheja and S. Sankar, “Vibration and Shock Isolation Performance of a Semi-Active ‘On-Off’ Damper,” Journal of Vibration, Acoustics, Stress, and Reliability in Design, vol. 107, no. 4, pp. 398–403, Oct. 1985, doi: 10.1115/1.3269279. [33] D. W. Felt, M. Hagenbuchle, J. Liu, and J. Richard, “Rheology of a Magnetorheological Fluid,” Journal of Intelligent Material Systems and Structures, vol. 7, no. 5, pp. 589–593, Sep. 1996, doi: 10.1177/1045389X9600700522. [34] E. Lemaire et al., “Influence of the particle size on the rheology of magnetorheological fluids,” Journal of Rheology, vol. 39, no. 5, pp. 1011–1020, Sep. 1995, doi: 10.1122/1.550614. [35] X. Zhang, X. Liu, R. Xiaohui, J. Zhao, and X. Gong, “The Influence of Additives on the Rheological and Sedimentary Properties of Magnetorheological Fluid,” Frontiers in Materials, vol. 7, doi: 10.3389/fmats.2020.631069. [36] T. Ma et al., “Optimized Fuzzy Skyhook Control for Semi-Active Vehicle Suspension with New Inverse Model of Magnetorheological Fluid Damper,” vol. 14, no. 1674, p. 1674, 2021, doi: 10.3390/en14061674. [37] X. Liu et al., “A new AI-surrogate model for dynamics analysis of a magnetorheological damper in the semi-active seat suspension,” vol. 29, no. 3, 2020, doi: 10.1088/1361-665X/ab6ba5. [38] A. Boltoşi, C. Opriţescu, and A. Ţîrdea, “Magneto Rheological Semi-Active Damper with External By-pass Circuit in Modular Structure,” vol. XVII, no. 2, pp. 41–48, 2010. [39] Ö. Şahin et al., “A comparative evaluation of semi-active control algorithms for real-time seismic protection of buildings via magnetorheological fluid dampers,” Journal of Building Engineering, vol. 42, 2021, doi: 10.1016/j.jobe.2021.102795. [40] W. He, Q. Ouyang, H. Hu, X. Ye, and L. Lin, “Semi-active control of crankshaft skyhook based on magnetorheological torsional damper,” vol. 9, 2022, doi: 10.3389/fmats.2022.933076. [41] K. E. Majdoub, F. Giri, and F.-Z. Chaoui, “Adaptive Backstepping Control Design for Semi-Active Suspension of Half-Vehicle With Magnetorheological Damper,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 3, 2021, doi: 10.1109/JAS.2020.1003521. [42] J. Yang et al., “A semi-active suspension using a magnetorheological damper with nonlinear negative-stiffness component,” Mechanical Systems and Signal Processing, vol. 147, 2021, doi: 10.1016/j.ymssp.2020.107071. [43] B. Kasemi, A. G. A. Muthalif, M. M. Rashid, and S. Fathima, “Fuzzy-PID Controller for Semi-Active Vibration Control Using Magnetorheological Fluid Damper,” Procedia Engineering, vol. 41, pp. 1221–1227, 2012, doi: 10.1016/j.proeng.2012.07.304. [44] A. Alrefaie, M. Ibrahim, H. Ibrahim, and C. S. and A. C. (CCE) M. C. 2022 19th International Conference on Electrical Engineering Mexico 2022 Nov. 9.-2022 Nov. 11, “Semi-Active Road-Vehicle Dynamics by implementing Neuro-Fuzzy Controlled damper,” in 2022 19th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), IEEE, 2022, pp. 1–5. doi: 10.1109/CCE56709.2022.9975986. [45] C. Poussot-Vassal, O. Sename, L. Dugard, R. Ramirez-Mendoza, and L. Flores, “OPTIMAL SKYHOOK CONTROL FOR SEMI-ACTIVE SUSPENSIONS,” IFAC Proceedings Volumes, vol. 39, no. 16, pp. 608–613, 2006, doi: 10.3182/20060912-3-DE-2911.00106. [46] J. Rabinow, “The Magnetic Fluid Clutch,” Transactions of the American Institute of Electrical Engineers, vol. 67, no. 2, 1948, doi: 10.1109/T-AIEE.1948.5059821. [47] S. Segla and M. Orecny, “Balance Control of Semiactive Seat Suspension with Elimination of Dynamic Jerk,” Procedia Engineering, vol. 96, pp. 419–427, 2014, doi: 10.1016/j.proeng.2014.12.111. [48] Aji Masa’id, Bhre Wangsa Lenggana, U. Ubaidillah, Didik Djoko Susilo, and Seung-Bok Choi, “A Review on Vibration Control Strategies Using Magnetorheological Materials Actuators: Application Perspective,” vol. 12, no. 113, p. 113, 2023, doi: 10.3390/act12030113. [49] M. Valasek, M. Babic, Z. Sika, and L. Magdolen, “Development of Semi-Active Truck Suspension,” IFAC Proceedings Volumes, vol. 30, no. 8, pp. 467–472, Jun. 1997, doi: 10.1016/S1474-6670(17)43865-1. [50] H.-S. Lee and S.-B. Choi, “Control and Response Characteristics of a Magneto-Rheological Fluid Damper for Passenger Vehicles,” Journal of Intelligent Material Systems and Structures, vol. 11, no. 1, pp. 80–87, Jan. 2000, doi: 10.1106/412A-2GMA-BTUL-MALT. [51] M. Zapateiro, N. Luo, H. R. Karimi, and J. Vehí, “Vibration control of a class of semiactive suspension system using neural network and backstepping techniques,” Mechanical Systems and Signal Processing, vol. 23, no. 6, pp. 1946–1953, 2009, doi: 10.1016/j.ymssp.2008.10.003. [52] S. S. Kang, K. Choi, J.-D. Nam, and H. J. Choi, “Magnetorheological Elastomers: Fabrication, Characteristics, and Applications.,” Materials (Basel), vol. 13, no. 20, Oct. 2020, doi: 10.3390/ma13204597. [53] A. M. H. Salem, A. Ali, R. B. Ramli, A. G. A. Muthalif, and S. Julai, “Effect of Carbonyl Iron Particle Types on the Structure and Performance of Magnetorheological Elastomers: A Frequency and Strain Dependent Study.,” Polymers (Basel), vol. 14, no. 19, Oct. 2022, doi: 10.3390/polym14194193. [54] A. Franck, “Viscoelasticity and Dynamical Mechanical Testing,” TA Instruments, Germany. Accessed: Aug. 05, 2023. [Online]. Available: https://www.tainstruments.com/pdf/literature/AAN004_Viscoelasticity_and_DMA.pdf [55] A. Boczkowska and S. Awietjan, “Microstructure and Properties of Magnetorheological Elastomers,” in Advanced Elastomers, A. Boczkowska, Ed., Rijeka: IntechOpen, 2012, p. Ch. 6. doi: 10.5772/50430. [56] J. Winger, M. Schümann, A. Kupka, and S. Odenbach, “Influence of the particle size on the magnetorheological effect of magnetorheological elastomers,” Journal of Magnetism and Magnetic Materials, vol. 481, pp. 176–182, 2019, doi: 10.1016/j.jmmm.2019.03.027. [57] N. Moksin, R. K. Shuib, H. Ismail, and M. K. Harun, “Frequency and Amplitude Dependence of Magnetorheological Elastomers Composites,” IOP Conference Series: Materials Science and Engineering, vol. 548, no. 1, p. 012006, 2019, doi: 10.1088/1757-899X/548/1/012006. [58] M. Norouzi, S. M. Sajjadi Alehashem, H. Vatandoost, Y. Q. Ni, and M. M. Shahmardan, “A new approach for modeling of magnetorheological elastomers,” Journal of Intelligent Material Systems and Structures, vol. 27, no. 8, pp. 1121–1135, 2016, doi: 10.1177/1045389X15615966. [59] Y. Yu, Y. Li, and J. Li, “Nonparametric modeling of magnetorheological elastomer base isolator based on artificial neural network optimized by ant colony algorithm,” Journal of Intelligent Material Systems and Structures, vol. 26, no. 14, pp. 1789–1798, 2015, doi: 10.1177/1045389X15577649. [60] M. A. Tariq, M. Usman, S. H. Farooq, I. Ullah, and A. Hanif, “Investigation of the Structural Response of the MRE-Based MDOF Isolated Structure under Historic Near- and Far-Fault Earthquake Loadings,” vol. 11, no. 2876, p. 2876, 2021, doi: 10.3390/app11062876. [61] H. NISHIMURA, T. KOMATSUZAKI, and Y. MATSUMURA, “Wave absorption control of a lumped mass system using a dynamic absorber with variable stiffness property,” vol. 89, no. 920, pp. 22–00257, 2023, doi: 10.1299/transjsme.22-00257. [62] Y.-Q. Guo, J. Zhang, D.-Q. He, and J.-B. Li, “Magnetorheological Elastomer Precision Platform Control Using OFFO-PID Algorithm,” vol. 2020, 2020, doi: 10.1155/2020/3025863. [63] X. B. Nguyen, T. Komatsuzaki, Y. Iwata, and H. Asanuma, “Fuzzy Semiactive Vibration Control of Structures Using Magnetorheological Elastomer,” Shock and Vibration, vol. 2017, 2017, doi: 10.1155/2017/3651057. [64] Q. Yang, Y. Yang, Q. Wang, and L. Peng, “Study on the fluctuating wind responses of constructing bridge towers with magnetorheological elastomer variable stiffness tuned mass damper,” Journal of Intelligent Material Systems and Structures, vol. 33, no. 2, pp. 290–308, 2022, doi: 10.1177/1045389X211014574. [65] T. Szmidt, D. Pisarski, R. Konowrocki, S. Awietjan, and A. Boczkowska, “Adaptive Damping of a Double-Beam Structure Based on Magnetorheological Elastomer,” Shock and Vibration, vol. 2019, 2019, doi: 10.1155/2019/8526179. [66] Y. Ni, Z. Ying, and Z. Chen, “Magneto-rheological elastomer (MRE) based composite structures for micro-vibration control,” Earthquake Engineering and Engineering Vibration, vol. 9, no. 3, pp. 345–356, 2010, doi: 10.1007/s11803-010-0019-z. [67] V. Rajamohan, R. Sedaghati, and S. Rakheja, “Optimal vibration control of beams with total and partial MR-fluid treatments,” Smart Materials and Structures, vol. 20, no. 11, p. 115016, Oct. 2011, doi: 10.1088/0964-1726/20/11/115016. [68] A. Fitzgerald, Electric Machinery, 7th ed. McGraw Hill, 2013. [69] W. Callister and D. Rethwisch, Materials Science and Engineering: An Introduction, 8th ed. Hoboken, NJ: John Wiley & Sons, Inc., 2010. [70] P. B. Nguyen and S. Choi, “A new approach to magnetic circuit analysis and its application to the optimal design of a bi-directional magnetorheological brake,” Smart Materials and Structures, vol. 20, p. 125003, Nov. 2011, doi: 10.1088/0964-1726/20/12/125003. [71] Remington Industries, “Remington Copper and Magnet Wire Data Chart.” Accessed: Jul. 03, 2023. [Online]. Available: https://www.remingtonindustries.com/content/Remington%20Copper%20and%20Magnet%20Wire%20Data%20Chart.pdf [72] The Engineering Toolbox, “Copper Wire - Electrical Resistance vs. Gauge.” Accessed: Aug. 02, 2023. [Online]. Available: https://www.engineeringtoolbox.com/copper-wire-d_1429.html [73] K&J Magnetics, “K&J Magnetics - Specifications,” Neodymium Magnet Physical Properties. Accessed: Aug. 02, 2023. [Online]. Available: https://www.kjmagnetics.com/specs.asp [74] Finite Element Method Magnetics, “NdFeB Properties.” Accessed: Jun. 17, 2023. [Online]. Available: https://www.femm.info/wiki/NeoProperties [75] LORD Corporation, “Lord Technical Data: MRF-132DG Magneto-Rheological Fluid.” Lord Corporation, 2019. Accessed: Jun. 17, 2023. [Online]. Available: https://lordfulfillment.com/pdf/44/DS7015_MRF-132DGMRFluid.pdf [76] Finite Element Method Magnetics, “Open Boundary Example,” Open Boundary Example. Accessed: Aug. 02, 2023. [Online]. Available: https://www.femm.info/wiki/OpenBoundaryExample [77] S. Rao, Vibration of Continuous Systems, 2nd ed. Hoboken: John Wiley & Sons, Inc., 2006. doi: 10.1002/9780470117866.ch17. [78] G. Szego 1895-, Orthogonal polynomials / by Gabor Szego. in Colloquium publications (American Mathematical Society) ; v. 23., no. Accessed from https://nla.gov.au/nla.cat-vn2358422. Providence: American Mathematical Society, 1939. [79] D. Zill and M. Cullen, Advanced Engineering Mathematics, 3rd ed. Sudbury, MA: Jones and Bartlett Publishers, LLC. [80] M. AMABILI and R. GARZIERA, “A TECHNIQUE FOR THE SYSTEMATIC CHOICE OF ADMISSIBLE FUNCTIONS IN THE RAYLEIGH–RITZ METHOD,” Journal of Sound and Vibration, vol. 224, no. 3, pp. 519–539, Jul. 1999, doi: 10.1006/jsvi.1999.2198. [81] The Engineering Toolbox, “Permeability,” Permeability. Accessed: Aug. 11, 2023. [Online]. Available: https://www.engineeringtoolbox.com/permeability-d_1923.html [82] J. Arora, Introduction to Optimum Design, 4th ed. [83] A. Chopra, Dynamics of Structures: Theory and Application to Earthquake Engineering, 3rd ed. Upple Saddle River, NJ: Prentice Hall. [84] A. Gilat, Numerical Methods for Engineers and Scientists, 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2014. [85] W. Thomson and M. Dahleh, Theory of Vibration with Applications, 5th ed. Upper Saddle River, NJ: John Wiley & Sons, Inc. [86] The Mathworks, Inc., “Band-Limited White Noise.” Accessed: Jul. 26, 2023. [Online]. Available: https://www.mathworks.com/help/simulink/slref/bandlimitedwhitenoise.html [87] L. A. Manita, “Optimal operating modes with chattering switching in manipulator control problems,” Journal of Applied Mathematics and Mechanics, vol. 64, no. 1, pp. 17–24, 2000, doi: 10.1016/S0021-8928(00)00021-6.