[1] Report on Paris Agreement, United Nations Framework Convention on Climate Change, 22 Oct. 2018 [Online]. Available: The Paris Agreement | UNFCCC [2] Maantay, J., & Becker, S. (2012). The health impacts of global climate change: a geographic perspective. Applied Geography, 33, 1-106. [3] Mestre-Sanchís, F., & Feijóo-Bello, M. L. (2009). Climate change and its marginalizing effect on agriculture. Ecological economics, 68(3), 896-904. [4] Yang, W., Li, T., & Cao, X. (2015). Examining the impacts of socio-economic factors, urban form and transportation development on CO2 emissions from transportation in China: a panel data analysis of China's provinces. Habitat International, 49, 212-220. [5] World Business Council for Sustainable Development (WBCSD). (2004). Mobility: 2030: http://docs.wbcsd.org/2004/06/Mobility2030-ExSummary.pdf [6] Thiel, C., Julea, A., Acosta Iborra, B., De Miguel Echevarria, N., Peduzzi, E., Pisoni, E., ... & Krause, J. (2019). Assessing the impacts of electric vehicle recharging infrastructure deployment efforts in the European Union. Energies, 12(12), 2409. [7] Roy, P. (2020). Thermal Modeling of Permanent Magnet Synchronous Motors for Electric Vehicle Application (Doctoral dissertation, University of Windsor (Canada)). [8] Liu, W., Hu, W., Lund, H., & Chen, Z. (2013). Electric vehicles and large-scale integration of wind power–The case of Inner Mongolia in China. Applied energy, 104, 445-456. [9] Hezam, I. M., Mishra, A. R., Rani, P., Cavallaro, F., Saha, A., Ali, J., ... & Štreimikienė, D. (2022). A hybrid intuitionistic fuzzy-MEREC-RS-DNMA method for assessing the alternative fuel vehicles with sustainability perspectives. Sustainability, 14(9), 5463. [10] Tong, F., & Azevedo, I. M. (2020). What are the best combinations of fuel-vehicle technologies to mitigate climate change and air pollution effects across the United States? Environmental Research Letters, 15(7), 074046. [11] Brase, G. L. (2019). What would it take to get you into an electric car? Consumer perceptions and decision making about electric vehicles. The Journal of psychology, 153(2), 214-236. [12] Fenton, J., & Hodkinson, R. (2001). Lightweight electric/hybrid vehicle design. [13] De Novellis, L., Sorniotti, A., Gruber, P., & Pennycott, A. (2014). Comparison of feedback control techniques for torque-vectoring control of fully electric vehicles. IEEE Transactions on Vehicular Technology, 63(8), 3612-3623. [14] Morrow, K., Karner, D., & Francfort, J. E. (2008). Plug-in hybrid electric vehicle charging infrastructure review. [15] Sciarretta, A., & Guzzella, L. (2007). Control of hybrid electric vehicles. IEEE control systems magazine, 27(2), 60-70. [16] Maggetto, G., & Van Mierlo, J. (2001, July). Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles: state of the art and perspectives. In Annales de Chimie Science des Materiaux (Vol. 26, No. 4, pp. 9-26). No longer published by Elsevier. [17] Kumar, R. R., & Alok, K. (2020). Adoption of electric vehicle: A literature review and prospects for sustainability. Journal of Cleaner Production, 253, 119911. [18] Poornesh, K., Nivya, K. P., & Sireesha, K. (2020, September). A comparative study on electric vehicle and internal combustion engine vehicles. In 2020 International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1179-1183). IEEE. [19] Taylor, A. M. (2008). Science review of internal combustion engines. Energy Policy, 36(12), 4657-4667. [20] Yildirim, M., Polat, M., & Kürüm, H. (2014, September). A survey on comparison of electric motor types and drives used for electric vehicles. In 2014 16th International Power Electronics and Motion Control Conference and Exposition (pp. 218-223). IEEE. [21] Cuenca, R. M., Gaines, L. L., & Vyas, A. D. (2000). Evaluation of electric vehicle production and operating costs (No. ANL/ESD-41). Argonne National Lab., IL (US). [22] [Online] Available: https://www.nrdc.org/stories/electric-vs-gas-cars-it-cheaper-drive-ev . [Accessed 2023] [23] Larson, P. D., Viáfara, J., Parsons, R. V., & Elias, A. (2014). Consumer attitudes about electric cars: Pricing analysis and policy implications. Transportation Research Part A: Policy and Practice, 69, 299-314. [24] Narasipuram, R. P., & Mopidevi, S. (2021). A technological overview & design considerations for developing electric vehicle charging stations. Journal of Energy Storage, 43, 103225. [25] Giansoldati, M., Monte, A., & Scorrano, M. (2020). Barriers to the adoption of electric cars: Evidence from an Italian survey. Energy Policy, 146, 111812. [26] Tu, H., Feng, H., Srdic, S., & Lukic, S. (2019). Extreme fast charging of electric vehicles: A technology overview. IEEE Transactions on Transportation Electrification, 5(4), 861-878. [27] Ravi, S. S., & Aziz, M. (2022). Utilization of electric vehicles for vehicle-to-grid services: Progress and perspectives. Energies, 15(2), 589. [28] Münzel, C., Plötz, P., Sprei, F., & Gnann, T. (2019). How large is the effect of financial incentives on electric vehicle sales?–A global review and European analysis. Energy Economics, 84, 104493. [29] Eberle, U., & Von Helmolt, R. (2010). Sustainable transportation based on electric vehicle concepts: a brief overview. Energy & Environmental Science, 3(6), 689-699. [30] ‘What is the role of electric vehicles in clean energy transitions’ [online]. Available: https://www.iea.org/energy-system/transport/electric-vehicles . [Accessed 2023] [31] [online] Available: https://www.iea.org/reports/global-ev-outlook-2023/trends-in-electric-light-duty-vehicles . [Accessed 2023] [32] [online] Available: https://www.statista.com/outlook/mmo/electric-vehicles/canada#unit-sales . [Accessed 2023] [33] [online] Available: https://driving.ca/column/driving-by-numbers/10-best-selling-electric-vehicles-canada-2022. [Accessed 2023] [34] Michaelides, E.E. (2018). Energy, the Environment, and Sustainability (1st ed.). CRC Press. https://doi.org/10.1201/b22169 [35] Elgowainy, A., Han, J., Poch, L., Wang, M., Vyas, A., Mahalik, M., & Rousseau, A. (2010). Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles (No. ANL/ESD/10-1). Argonne National Lab.(ANL), Argonne, IL (United States). [36] Brinkman, N., Wang, M., Weber, T., & Darlington, T. (2005). Well-to-wheels analysis of advanced fuel/vehicle systems: A North American study of energy use, greenhouse gas emissions, and criteria pollutant emissions. EERE Publication and Product Library, Washington, DC (United States). [37] Michaelides, E. E. (2021). Primary energy use and environmental effects of electric vehicles. World Electric Vehicle Journal, 12(3), 138. [38] Dorrell, D. G., Knight, A. M., Popescu, M., Evans, L., & Staton, D. A. (2010, September). Comparison of different motor design drives for hybrid electric vehicles. In 2010 IEEE energy conversion congress and exposition (pp. 3352-3359). IEEE. [39] Jape, S. R., & Thosar, A. (2017). Comparison of electric motors for electric vehicle application. international Journal of Research in Engineering and Technology, 6(09), 12-17. [40] Patil, S. V., & Saxena, R. (2022, February). Design & Simulation of Brushless DC Motor Using ANSYS for EV Application. In 2022 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS) (pp. 1-5). IEEE. [41] Pugliese, H., & Von Kannewurff, M. (2013). Discovering DC: A primer on DC circuit breakers, their advantages, and design. IEEE Industry Applications Magazine, 19(5), 22-28. [42] Gupta, J. B. (2009). Theory & performance of electrical machines. SK Kataria and Sons. [43] Hashemnia, N., & Asaei, B. (2008, September). Comparative study of using different electric motors in the electric vehicles. In 2008 18th international conference on electrical machines (pp. 1-5). IEEE. [44] Mohanraj, D., Aruldavid, R., Verma, R., Sathiyasekar, K., Barnawi, A. B., Chokkalingam, B., & Mihet-Popa, L. (2022). A review of BLDC Motor: State of Art, advanced control techniques, and applications. IEEE Access, 10, 54833-54869. [45] Rahman, K. M., & Schulz, S. E. (2002). Design of high-efficiency and high-torque-density switched reluctance motor for vehicle propulsion. IEEE Transactions on Industry Applications, 38(6), 1500-1507. [46] Zabihi, N., & Gouws, R. (2016, June). A review on switched reluctance machines for electric vehicles. In 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE) (pp. 799-804). IEEE. [47] Shi, X., & Krishnamurthy, M. (2014). Survivable operation of induction machine drives with smooth transition strategy for EV applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2(3), 609-617. [48] Tazerart, F., Mokrani, Z., Rekioua, D., & Rekioua, T. (2015). Direct torque control implementation with losses minimization of induction motor for electric vehicle applications with high operating life of the battery. International journal of hydrogen energy, 40(39), 13827-13838. [49] Guan, Y., Zhu, Z. Q., Afinowi, I. A., Mipo, J. C., & Farah, P. (2014, October). Comparison between induction machine and interior permanent magnet machine for electric vehicle application. In 2014 17th International Conference on Electrical Machines and Systems (ICEMS) (pp. 144-150). IEEE. [50] Murali, N., & Ushakumari, S. (2020, November). Performance comparison between different rotor configurations of PMSM for EV application. In 2020 IEEE REGION 10 CONFERENCE (TENCON) (pp. 1334-1339). IEEE. [51] Hassan, W., & Wang, B. (2012, June). Efficiency optimization of PMSM based drive system. In Proceedings of The 7th International Power Electronics and Motion Control Conference (Vol. 2, pp. 1027-1033). IEEE. [52] Rauth, S. S., & Samanta, B. (2020, December). Comparative analysis of IM/BLDC/PMSM drives for electric vehicle traction applications using ANN-based FOC. In 2020 IEEE 17th India Council International Conference (INDICON) (pp. 1-8). IEEE. [53] Zeraoulia, M., Benbouzid, M. E. H., & Diallo, D. (2006). Electric motor drive selection issues for HEV propulsion systems: A comparative study. IEEE Transactions on Vehicular technology, 55(6), 1756-1764. [54] ‘Indian Railways’ IRFCA. [online] Available: https://www.irfca.org/gallery/Locos/Electric/wam4x/?g2_page=2. [Accessed 2023] [55] [online] Available: https://www.speegovehicles.com/speego-cr.php. [Accessed 2023] [56] [online] Available: https://www.tesla.com. [Accessed 2023] [57] [online] Available: https://www.nissan.ca. [Accessed 2023] [58] Barman, P., Dutta, L., Bordoloi, S., Kalita, A., Buragohain, P., Bharali, S., & Azzopardi, B. (2023). Renewable energy integration with electric vehicle technology: A review of the existing smart charging approaches. Renewable and Sustainable Energy Reviews, 183, 113518. [59] Omekanda, A. M. (2013, March). Switched reluctance machines for EV and HEV propulsion: State-of-the-art. In 2013 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD) (pp. 70-74). IEEE. [60] Lukic, S. M., & Emado, A. (2003, September). Modeling of electric machines for automotive applications using efficiency maps. In Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Technology Conference (Cat. No. 03CH37480) (pp. 543-550). IEEE. [61] Xu, W., Chen, H., Zhao, H., & Ren, B. (2019). Torque optimization control for electric vehicles with four in-wheel motors equipped with regenerative braking system. Mechatronics, 57, 95-108. [62] Vražić, M., Vuljaj, D., Pavasović, A., & Pauković, H. (2014, May). Study of a vehicle conversion from internal combustion engine to electric drive. In 2014 IEEE international energy conference (ENERGYCON) (pp. 1544-1548). IEEE. [63] Davis, R. I., & Lorenz, R. D. (2003). Engine torque ripple cancellation with an integrated starter alternator in a hybrid electric vehicle: implementation and control. IEEE Transactions on Industry Applications, 39(6), 1765-1774. [64] Ralev, I., Qi, F., Burkhart, B., Klein-Hessling, A., & De Doncker, R. W. (2017). Impact of smooth torque control on the efficiency of a high-speed automotive switched reluctance drive. IEEE Transactions on industry applications, 53(6), 5509-5517. [65] Wang, H., & Leng, J. (2018, June). Summary on development of permanent magnet synchronous motor. In 2018 Chinese Control And Decision Conference (CCDC) (pp. 689-693). IEEE. [66] Marlino, L. D. (2005). Report on Toyota Prius motor thermal management. Oak Ridge National Laboratory, 11-36.Petrov, I., & Pyrhonen, J. (2012). Performance of low-cost permanent magnet material in PM synchronous machines. IEEE transactions on Industrial Electronics, 60(6), 2131-2138. [67] Li, Z., Feng, G., Lai, C., Banerjee, D., Li, W., & Kar, N. C. (2019). Current injection-based multi-parameter estimation for dual three-phase IPMSM considering VSI nonlinearity. IEEE Transactions on Transportation Electrification, 5(2), 405-415. [68] Ibrahim, M., & Pillay, P. (2018, September). Aligning the reluctance and magnet torque in permanent magnet synchronous motors for improved performance. In 2018 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 2286-2291). IEEE. [69] Yan, X., & Patterson, D. (1999, July). Improvement of drive range, acceleration and deceleration performance in an electric vehicle propulsion system. In 30th Annual IEEE Power Electronics Specialists Conference. Record.(Cat. No. 99CH36321) (Vol. 2, pp. 638-643). IEEE. [70] Li, M., He, J., & Demerdash, N. A. (2014, June). A flux-weakening control approach for interior permanent magnet synchronous motors based on Z-source inverters. In 2014 IEEE Transportation Electrification Conference and Expo (ITEC) (pp. 1-6). IEEE. [71] Bilgin, B., & Emadi, A. (2014). Electric motors in electrified transportation: A step toward achieving a sustainable and highly efficient transportation system. IEEE Power Electronics Magazine, 1(2), 10-17. [72] Ali, S. N., Hanif, A., & Ahmed, Q. (2016, January). Review in thermal effects on the performance of electric motors. In 2016 International Conference on Intelligent Systems Engineering (ICISE) (pp. 83-88). IEEE. [73] Zhang, Z., Li, G., Qian, Z., Ye, Q., & Xia, Y. (2016, June). Research on effect of temperature on performance and temperature compensation of interior permanent magnet motor. In 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA) (pp. 411-414). IEEE. [74] Zhang, B., Song, Z., Liu, S., Huang, R., & Liu, C. (2022). Overview of integrated electric motor drives: Opportunities and challenges. Energies, 15(21), 8299. [75] Akram, S., Wang, P., Nazir, M. T., Zhou, K., Bhutta, M. S., & Hussain, H. (2020). Impact of impulse voltage frequency on the partial discharge characteristic of electric vehicles motor insulation. Engineering Failure Analysis, 116, 104767. [76] [online] Available: https://electrical-engineering-portal.com. [Accessed 2023] [77] Ost, W., & De Baets, P. (2005). Failure analysis of the deep groove ball bearings of an electric motor. Engineering Failure Analysis, 12(5), 772-783. [78] Wallscheid, O., Huber, T., Peters, W., & Böcker, J. (2014, October). Real-time capable methods to determine the magnet temperature of permanent magnet synchronous motors—A review. In IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society (pp. 811-818). IEEE. [79] Schützhold, J., & Hofmann, W. (2013, September). Analysis of the temperature dependence of losses in electrical machines. In 2013 IEEE Energy Conversion Congress and Exposition (pp. 3159-3165). IEEE [80] Desai, C., & Pillay, P. (2019). Back EMF, torque–angle, and core loss characterization of a variable-flux permanent-magnet machine. IEEE Transactions on Transportation Electrification, 5(2), 371-384. [81] Schmitz, D., Sadowski, N., Nau, S. L., Batistela, N. J., & Bastos, J. P. A. (2014). Three-phase electromagnetic device for the evaluation of the magnetic losses in electric motors’ stators. IEEE Transactions on energy conversion, 30(2), 515-521. [82] Muthusamy, M., & Pillay, P. (2021, October). Design of an Outer Rotor PMSM with Soft Magnetic Composite Stator Core. In 2021 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 3987-3992). IEEE. [83] Ilina, I. D. (2011, May). Experimental determination of moment to inertia and mechanical losses vs. speed, in electrical machines. In 2011 7th International Symposium on Advanced Topics in Electrical Engineering (ATEE) (pp. 1-4). IEEE. [84] Boglietti, A., Cavagnino, A., Staton, D., Shanel, M., Mueller, M., & Mejuto, C. (2009). Evolution and modern approaches for thermal analysis of electrical machines. IEEE Transactions on industrial electronics, 56(3), 871-882. [85] Nategh, S. (2013). Thermal analysis and management of high-performance electrical machines (Doctoral dissertation, KTH Royal Institute of Technology). [86] Roy, P. (2020). Thermal Modeling of Permanent Magnet Synchronous Motors for Electric Vehicle Application (Doctoral dissertation, University of Windsor (Canada)). [87] Bergman, T. L., Lavine, A. S., Incropera, F. P., & DeWitt, D. P. (2011). Introduction to heat transfer. John Wiley & Sons. [88] Kirchgässner, W., Wallscheid, O., & Böcker, J. (2023). Thermal neural networks: Lumped-parameter thermal modeling with state-space machine learning. Engineering Applications of Artificial Intelligence, 117, 105537. [89] Madonna, V., Giangrande, P., Gerada, C., & Galea, M. (2019). Thermal analysis of fault‐tolerant electrical machines for aerospace actuators. IET Electric Power Applications, 13(7), 843-852. [90] Kačenka, A., Pop, A. C., Vintiloiu, I., & Fodorean, D. (2019, October). Lumped parameter thermal modeling of permanent magnet synchronous motor. In 2019 Electric Vehicles International Conference (EV) (pp. 1-6). IEEE. [91] Wang, X., Li, B., Gerada, D., Huang, K., Stone, I., Worrall, S., & Yan, Y. (2022). A critical review on thermal management technologies for motors in electric cars. Applied Thermal Engineering, 201, 117758. [92] Boglietti, A., Cavagnino, A., & Staton, D. (2008). Determination of critical parameters in electrical machine thermal models. IEEE transactions on Industry Applications, 44(4), 1150-1159. [93] Nerg, J., Rilla, M., & Pyrhonen, J. (2008). Thermal analysis of radial-flux electrical machines with a high power density. IEEE Transactions on industrial electronics, 55(10), 3543-3554. [94] Tam, A. C., & Sontag, H. (1986). Measurement of air gap thickness underneath an opaque film by pulsed photothermal radiometry. Applied physics letters, 49(26), 1761-1763. [95] He, H., & Yu, Z. (2018). Effect of air gap entrapped in firefighter protective clothing on thermal resistance and evaporative resistance. Autex Research Journal, 18(1), 28-34. [96] Anderssson, B. (2013). Lumped parameter thermal modelling of electric machines. [97] Yang, Y., Bilgin, B., Kasprzak, M., Nalakath, S., Sadek, H., Preindl, M., ... & Emadi, A. (2017). Thermal management of electric machines. IET Electrical Systems in Transportation, 7(2), 104-116. [98] Muthusamy, M., Hendershot, J., & Pillay, P. (2022). Design of a Spoke Type PMSM With SMC Stator Core for Traction Applications. IEEE Transactions on Industry Applications, 59(2), 1418-1436. [99] Boylestad, R. L. (2010). Introductory circuit analysis. Prentice Hall Press.