[1] W. Umer, M. F. Antwi-Afari, H. Li, G. . Y. Szeto, and A. Y. L. Wong, “The prevalence of musculoskeletal symptoms in the construction industry: a systematic review and meta-analysis,” Int. Arch. Occup. Environ. Health, vol. 91, no. 2, pp. 125–144, Feb. 2018, doi: 10.1007/s00420-017-1273-4. [2] X. Wang, X. S. Dong, S. D. hoi, and J. Dement, “Work-related musculoskeletal disor-ders among construction workers in the United States from 992 to 20 4,” Occup. Envi-ron. Med., vol. 74, no. 5, pp. 374–380, 2017. [3] M. F. Antwi-Afari, H. Li, D. J. Edwards, E. A. Pärn, O.-M. De-Graft, J. Seo, et al., “Iden-tification of potential biomechanical risk factors for low back disorders during repetitive rebar lifting,” Constr. Innov., vol. 18, no. 2, 2018, doi: 10.1108/CI-05-2017-0048. [4] M. S. Forde, L. unnett, and D. H. Wegman, “ revalence of Musculoskeletal Disorders in Union Ironworkers,” J. Occup. Environ. Hyg., vol. 2, no. 4, pp. 203–212, Apr. 2005, doi: 10.1080/15459620590929635. [5] S. Kim, M. A. Nussbaum, M. Smets, and S. Ranganathan, “Effects of an arm-support exoskeleton on perceived work intensity and musculoskeletal discomfort: An 18-month field study in automotive assembly,” Am. J. Ind. Med., vol. 64, no. 11, pp. 905–914, 2021, doi: 10.1002/ajim.23282. [6] G. Ferreira, J. Gaspar, . Fujão, and I. L. Nunes, “ iloting the Use of an Upper Limb Passive Exoskeleton in Automotive Industry: Assessing User Acceptance and Intention of Use,” In Advances in Human Factors and Systems Interaction, Cham, 2020, pp. 342–349, doi: 10.1007/978-3-030-51369-6_46. [7] R. Hensel and M. Keil, “Subjective Evaluation of a assive Industrial Exoskeleton for Lower-back Support: A Field Study in the Automotive Sector,” IISE Trans. Occup. Er-gon. Hum. Factors, vol. 7, no. 3–4, pp. 213–221, Oct. 2019, doi: 10.1080/24725838.2019.1573770. [8] M. Smets, “A Field Evaluation of Arm-Support Exoskeletons for Overhead Work Appli-cations in Automotive Assembly,” IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, no. 3–4, pp. 192–198, Oct. 2019, doi: 10.1080/24725838.2018.1563010. 10 [9] S. Crea, P. Beckerle, M. D. Looze, K. D. Pauw, L. Grazi, T. Kermavnar, et al., “Occupa-tional exoskeletons: A roadmap toward large-scale adoption. Methodology and challenges of bringing exoskeletons to workplaces,” Wearable Technol., vol. 2, 2021, doi: 10.1017/wtc.2021.11. [10] Z. Zhu, A. Dutta, and F. Dai, “Exoskeletons for manual material handling – A review and implication for construction applications,” Autom. Constr., vol. 122, Feb. 2021, doi: 10.1016/j.autcon.2020.103493. [11] M. M. Alemi, S. Madinei, S. Kim, D. Srinivasan, and M. A. Nussbaum, “Effects of Two Passive Back-Support Exoskeletons on Muscle Activity, Energy Expenditure, and Sub-jective Assessments During Repetitive Lifting,” Hum. Factors, vol. 62, no. 3, pp. 458–474, May 2020, doi: 10.1177/0018720819897669. [12] A. Golabchi, A. hao, and M. Tavakoli, “A Systematic Review of Industrial Exoskeletons for Injury Prevention: Efficacy Evaluation Metrics, Target Tasks, and Supported Body ostures,” Sensors, vol. 22, Apr. 2022, doi: 10.3390/s22072714. [13] W. S. Marras, W. G. Allread, D. L. Burr, and F. A. Fathallah, “ rospective validation of a low-back disorder risk model and assessment of ergonomic interventions associated with manual materials handling tasks,” Ergonomics, vol. 43, no. 11, pp. 1866–1886, Nov. 2000, doi: 10.1080/00140130050174518. [14] T. R. WATERS, V. PUTZ-ANDERSON, A. GARG, and L. J. FINE, “Revised NIOSH equation for the design and evaluation of manual lifting tasks,” Ergonomics, vol. 36, no. 7, pp. 749–776, Jul. 1993, doi: 10.1080/00140139308967940. [15] G. Borg, Bo ’ P v x o . Champaign, IL: Human Kinetics, 1998. [16] M. . Van der Grinten and . Smitt, “Development of a practical method for measuring body part discomfort.,” Adv. Ind. Ergon. Saf., vol. 4, no. 635, pp. 311–18, 1992. [17] A. Bangor, . T. Kortum, and J. T. Miller, “An Empirical Evaluation of the System Usa-bility Scale,” Int. J. Human–Computer Interact., vol. 24, no. 6, pp. 574–594, Jul. 2008, doi: 10.1080/10447310802205776. [18] V. Kopp, M. Holl, M. Schalk, U. Daub, E. Bances, B. García, et al., “Exoworkathlon: A prospective study approach for the evaluation of industrial exoskeletons,” Wearable Tech-nol., vol. 3, ed 2022, doi: 10.1017/wtc.2022.17. [19] S. Kim, A. Moore, D. Srinivasan, A. Akanmu, A. Barr, C. Harris-Adamson, et al., “ o-tential of Exoskeleton Technologies to Enhance Safety, Health, and Performance in Con-struction: Industry erspectives and Future Research Directions,” IISE Trans. Occup. Er-gon. Hum. Factors, vol. 7, no. 3–4, pp. 185–191, Oct. 2019, doi: 10.1080/24725838.2018.1561557. [20] D. Mahmud, S. T. Bennett, Z. Zhu, P. G. Adamczyk, M. Wehner, D. Veeramani, et al., “Identifying Facilitators, Barriers, and otential Solutions of Adopting Exoskeletons and Exosuits in onstruction Workplaces,” Sensors, vol. 22, no. 24, Dec. 2022, doi: 10.3390/s22249987. [21] N. Gonsalves, A. Akanmu, X. Gao, . Agee, and A. Shojaei, “Industry erception of the Suitability of Wearable Robot for onstruction Work,” J. Constr. Eng. Manag., vol. 149, no. 5, May 2023, doi: 10.1061/JCEMD4.COENG-12762. 11 [22] . Nnaji, I. Okpala, J. Gambatese, and Z. Jin, “ ontrolling safety and health challenges intrinsic in exoskeleton use in construction,” Saf. Sci., vol. 157, Jan. 2023, doi: 10.1016/j.ssci.2022.105943. [23] M. F. Antwi-Afari, H. Li, S. Anwer, D. Li, Y. Yu, H.-Y. Mi, et al., “Assessment of a passive exoskeleton system on spinal biomechanics and subjective responses during man-ual repetitive handling tasks among construction workers,” Saf. Sci., vol. 142, Oct. 2021, doi: 10.1016/j.ssci.2021.105382. [24] O. Ogunseiju, N. Gonsalves, A. Akanmu, and . Nnaji, “Subjective Evaluation of assive Back-Support Exoskeleton for Flooring Work,” In EPiC Series in Built Environment, Jun. 2021, vol. 2, pp. 10–17, doi: 10.29007/3jk9. [25] N. Gonsalves, O. R. Ogunseiju, O. Ogunseiju, A. Akanmu, and . Nnaji, “Assessment of a passive wearable robot for reducing low back disorders during rebar work,” J. Inf. Tech-nol. Constr., vol. 26, pp. 936–952, Nov. 2021, doi: 10.36680/j.itcon.2021.050. [26] N. Gonsalves, O. Ogunseiju, A. Akanmu, and . Nnaji, “Influence of a Back-Support Exoskeleton on hysical Demands of Rebar Work,” In EPiC Series in Built Environment, Jun. 2021, vol. 2, pp. 1–9, doi: 10.29007/5rg3. [27] N. J. Gonsalves, M. Khalid, A. Akinniyi, O. Ogunseiju, and A. Akanmu, “Subjective Evaluation of Passive Back-Support Wearable Robot for Simulated Rebar Work,” In ISARC. Proceedings of the International Symposium on Automation and Robotics in Con-struction, Waterloo, Canada, 2022, vol. 39, pp. 430–436. [28] M. de Looze, A. de Vries, F. Krause, and S. Baltrusch, “Three-Stage Evaluation for De-fining the otential of an Industrial Exoskeleton in a Specific Job,” In Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021), Cham, 2022, pp. 235–241, doi: 10.1007/978-3-030-74614-8_28. [29] B. D. Lowe, W. G. Billotte, and D. R. eterson, “ASTM F48 Formation and Standards for Industrial Exoskeletons and Exosuits,” IISE Trans. Occup. Ergon. Hum. Factors, vol. 7, no. 3–4, pp. 230–236, Oct. 2019, doi: 10.1080/24725838.2019.1579769. [30] R. Bostelman, Y.-S. Li-Baboud, A. Virts, S. Yoon, and M. Shah, “Towards Standard Ex-oskeleton Test Methods for Load Handling,” In 2019 Wearable Robotics Association Conference (WearRAcon), Scottsdale, AZ, USA, Mar. 2019, pp. 21–27, doi: 10.1109/WEARRACON.2019.8719403. [31] A. Virts, R. V. Bostelman, S. Yoon, Y.-S. Li-Baboud, and M. Shah, “A eg-in-Hole Test and Analysis Method for Exoskeleton Evaluation,” NIST, Mar. 2022, Accessed: Oct. 24, 2022. [Online]. Available: https://www.nist.gov/publications/peg-hole-test-and-analysis-method-exoskeleton-evaluation [32] S. De Bock, J. Ghillebert, R. Govaerts, B. Tassignon, C. Rodriguez-Guerrero, S. Crea, et al., “Benchmarking occupational exoskeletons: An evidence mapping systematic review,” Appl. Ergon., vol. 98, Jan. 2022, doi: 10.1016/j.apergo.2021.103582. [33] N. Hoffmann, G. rokop, and R. Weidner, “Methodologies for evaluating exoskeletons with industrial applications,” Ergonomics, vol. 65, no. 2, pp. 276–295, Feb. 2022, doi: 10.1080/00140139.2021.1970823. [34] M. Bär, B. Steinhilber, M. A. Rieger, and T. Luger, “The influence of using exoskeletons during occupational tasks on acute physical stress and strain compared to no exoskeleton – A systematic review and meta-analysis,” Appl. Ergon., vol. 94, Jul. 2021, doi: 10.1016/j.apergo.2021.103385. 12 [35] S. De Bock, J. Ghillebert, R. Govaerts, S. A. Elprama, U. Marusic, B. Serrien, et al., “ as-sive Shoulder Exoskeletons: More Effective in the Lab Than in the Field?,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 173–183, 2021, doi: 10.1109/TNSRE.2020.3041906. [36] W. Umer, H. Li, G. . Y. Szeto, H. S. An, and A. Y. L. Wong, “Identification of Biome-chanical Risk Factors for the Development of Lower-Back Disorders during Manual Re-bar Tying,” J. Constr. Eng. Manag.-Asce, vol. 143, no. 1, Jan. 2017, doi: 10.1061/(asce)co.1943-7862.0001208.