Alam, M. S., Murshed, M., Manigandan, P., Pachiyappan, D., & Abduvaxitovna, S. Z. (2023). Forecasting oil, coal, and natural gas prices in the pre-and post-COVID scenarios: Contextual evidence from India using time series forecasting tools. Resources Policy, 81, 103342. https://doi.org/10.1016/j.resourpol.2023.103342 Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8 Bauquis, P. R. (2001). A Reappraisal of Energy Supply and Demand in 2050. Oil & Gas Science and Technology - Revue d’IFP Energies Nouvelles, 56(4), 389–402. https://doi.org/10.2516/ogst:2001034 Bouteska, A., Hajek, P., Fisher, B., & Abedin, M. Z. (2023). Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network. Research in International Business and Finance, 64, 101863. https://doi.org/10.1016/j.ribaf.2022.101863 Busari, G. A., & Lim, D. H. (2021). Crude oil price prediction: A comparison between AdaBoost-LSTM and AdaBoost-GRU for improving forecasting performance. Computers & Chemical Engineering, 155, 107513. https://doi.org/10.1016/j.compchemeng.2021.107513 Cen, Z., & Wang, J. (2019). Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer. Energy, 169, 160–171. https://doi.org/10.1016/j.energy.2018.12.016 Chen, Y., He, K., & Tso, G. K. F. (2017). Forecasting Crude Oil Prices: A Deep Learning based Model. Procedia Computer Science, 122, 300–307. https://doi.org/10.1016/j.procs.2017.11.373 Cho, K., van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. In D. Wu, M. Carpuat, X. Carreras, & E. M. Vecchi (Eds.), Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (pp. 103–111). Association for Computational Linguistics. https://doi.org/10.3115/v1/W14-4012 de Amorim, L. B. V., Cavalcanti, G. D. C., & Cruz, R. M. O. (2023). The choice of scaling technique matters for classification performance. Applied Soft Computing, 133, 109924. https://doi.org/10.1016/j.asoc.2022.109924 Fang, Y., Wang, W., Wu, P., & Zhao, Y. (2023). A sentiment-enhanced hybrid model for crude oil price forecasting. Expert Systems with Applications, 215, 119329. https://doi.org/10.1016/j.eswa.2022.119329 Gao, C., Yan, J., Zhou, S., Varshney, P. K., & Liu, H. (2019). Long short-term memory-based deep recurrent neural networks for target tracking. Information Sciences, 502, 279–296. https://doi.org/10.1016/j.ins.2019.06.039 Gao, W., Aamir, M., Shabri, A. B., Dewan, R., & Aslam, A. (2019). Forecasting Crude Oil Price Using Kalman Filter Based on the Reconstruction of Modes of Decomposition Ensemble Model. IEEE Access, 7, 149908–149925. https://doi.org/10.1109/ACCESS.2019.2946992 Gharib, C., Mefteh-Wali, S., Serret, V., & Ben Jabeur, S. (2021). Impact of COVID-19 pandemic on crude oil prices: Evidence from Econophysics approach. Resources Policy, 74, 102392. https://doi.org/10.1016/j.resourpol.2021.102392 Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation. Departmental Technical Reports (CS). https://scholarworks.utep.edu/cs_techrep/1209 Guo, J., Zhao, Z., Sun, J., & Sun, S. (2022). Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework. Resources Policy, 77, 102737. https://doi.org/10.1016/j.resourpol.2022.102737 Guo, L., Huang, X., Li, Y., & Li, H. (2023). Forecasting crude oil futures price using machine learning methods: Evidence from China. Energy Economics, 127, 107089. https://doi.org/10.1016/j.eneco.2023.107089 Gupta, E. (2008). Oil vulnerability index of oil-importing countries. Energy Policy, 36(3), 1195–1211. https://doi.org/10.1016/j.enpol.2007.11.011 He, K., Zha, R., Wu, J., & Lai, K. K. (2016). Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price. Sustainability, 8(4), Article 4. https://doi.org/10.3390/su8040387 Hochreiter, S., & Schmidhuber, J. (1997). Long Short-term Memory. Neural Computation, 9, 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 Iqbal, W., Fatima, A., Yumei, H., Abbas, Q., & Iram, R. (2020). Oil supply risk and affecting parameters associated with oil supplementation and disruption. Journal of Cleaner Production, 255, 120187. https://doi.org/10.1016/j.jclepro.2020.120187 Jiang, Y., Kim, H., Asnani, H., Kannan, S., Oh, S., & Viswanath, P. (2020). LEARN Codes: Inventing Low-Latency Codes via Recurrent Neural Networks. IEEE Journal on Selected Areas in Information Theory, 1(1), 207–216. https://doi.org/10.1109/JSAIT.2020.2988577 Karasu, S., & Altan, A. (2022). Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization. Energy, 242, 122964. https://doi.org/10.1016/j.energy.2021.122964 Kurt, B., Gürlek, B., Keskin, S., Özdemir, S., Karadeniz, Ö., Kırkbir, İ. B., Kurt, T., Ünsal, S., Kart, C., Baki, N., & Turhan, K. (2023). Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques. Medical & Biological Engineering & Computing, 61(7), 1649–1660. https://doi.org/10.1007/s11517-023-02800-7 Li, R., Hu, Y., Heng, J., & Chen, X. (2021). A novel multiscale forecasting model for crude oil price time series. Technological Forecasting and Social Change, 173(C). https://ideas.repec.org//a/eee/tefoso/v173y2021ics0040162521006144.html Marchese, M., Kyriakou, I., Tamvakis, M., & Di Iorio, F. (2020). Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models. Energy Economics, 88, 104757. https://doi.org/10.1016/j.eneco.2020.104757 Mohsin, M., & Jamaani, F. (2023). A novel deep-learning technique for forecasting oil price volatility using historical prices of five precious metals in context of green financing – A comparison of deep learning, machine learning, and statistical models. Resources Policy, 86, 104216. https://doi.org/10.1016/j.resourpol.2023.104216 Moshiri, S., & Foroutan, F. (2006). Forecasting Nonlinear Crude Oil Futures Prices. The Energy Journal, 27(4), 81–96. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol27-No4-4 Nagendra Kumar, Y. J., Preetham, P., Kiran Varma, P., Rohith, P., & Dilip Kumar, P. (2020). Crude Oil Price Prediction Using Deep Learning. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), 118–123. https://doi.org/10.1109/ICIRCA48905.2020.9183258 Niu, T., Wang, J., Lu, H., Yang, W., & Du, P. (2021). A Learning System Integrating Temporal Convolution and Deep Learning for Predictive Modeling of Crude Oil Price. IEEE Transactions on Industrial Informatics, 17(7), 4602–4612. https://doi.org/10.1109/TII.2020.3016594 Oil vulnerability index of oil-importing countries—ScienceDirect. (n.d.). Retrieved March 23, 2024, from https://www-sciencedirect-com.lib-ezproxy.concordia.ca/science/article/pii/S0301421507005022?via%3Dihub Ranjit, M. P., Ganapathy, G., Sridhar, K., & Arumugham, V. (2019). Efficient Deep Learning Hyperparameter Tuning Using Cloud Infrastructure: Intelligent Distributed Hyperparameter Tuning with Bayesian Optimization in the Cloud. 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), 520–522. https://doi.org/10.1109/CLOUD.2019.00097 Saxena, S. (2021, March 16). What is LSTM? Introduction to Long Short-Term Memory. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/ Sen, A., & Dutta Choudhury, K. (2024). Forecasting the Crude Oil prices for last four decades using deep learning approach. Resources Policy, 88, 104438. https://doi.org/10.1016/j.resourpol.2023.104438 Shenfield, A., & Howarth, M. (2020). A Novel Deep Learning Model for the Detection and Identification of Rolling Element-Bearing Faults. Sensors (Basel, Switzerland), 20. https://doi.org/10.3390/s20185112 Su, M., Liu, H., Yu, C., & Duan, Z. (2022). A New crude oil futures forecasting method based on fusing quadratic forecasting with residual forecasting. Digital Signal Processing, 130, 103691. https://doi.org/10.1016/j.dsp.2022.103691 Wang, J., Zhou, H., Hong, T., Li, X., & Wang, S. (2020). A multi-granularity heterogeneous combination approach to crude oil price forecasting. Energy Economics, 91, 104790. https://doi.org/10.1016/j.eneco.2020.104790 Wu, J., Chen, Y., Zhou, T., & Li, T. (2019). An Adaptive Hybrid Learning Paradigm Integrating CEEMD, ARIMA and SBL for Crude Oil Price Forecasting. Energies, 12(7), Article 7. https://doi.org/10.3390/en12071239 Xu, Z., Mohsin, M., Ullah, K., & Ma, X. (2023). Using econometric and machine learning models to forecast crude oil prices: Insights from economic history. Resources Policy, 83(C). https://ideas.repec.org//a/eee/jrpoli/v83y2023ics0301420723003252.html Yu, L., Xu, H., & Tang, L. (2017). LSSVR ensemble learning with uncertain parameters for crude oil price forecasting. Applied Soft Computing, 56, 692–701. https://doi.org/10.1016/j.asoc.2016.09.023 Zhang, T., Tang, Z., Wu, J., Du, X., & Chen, K. (2021). Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm. Energy, 229, 120797. https://doi.org/10.1016/j.energy.2021.120797 Zhou, D.-X. (2020). Theory of deep convolutional neural networks: Downsampling. Neural Networks, 124, 319–327. https://doi.org/10.1016/j.neunet.2020.01.018 Aghaabbasi, M., Ali, M., Jasinski, M., Leonowicz, Z., & Novak, T. (2023). On Hyperparameter Optimization of Machine Learning Methods Using a Bayesian Optimization Algorithm to Predict Work Travel Mode Choice. IEEE ACCESS, 11, 19762–19774. https://doi.org/10.1109/ACCESS.2023.3247448 Alali, Y., Harrou, F., & Sun, Y. (2022). A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models. SCIENTIFIC REPORTS, 12(1), 2467. https://doi.org/10.1038/s41598-022-06218-3 Mohammed Abdelkader, E., Zayed, T., Elshaboury, N., & Taiwo, R. (2024). A hybrid Bayesian optimization-based deep learning model for modeling the condition of saltwater pipes in Hong Kong. International Journal of Construction Management, 0(0), 1–17. https://doi.org/10.1080/15623599.2024.2304392 Sani, S., Xia, H., Milisavljevic-Syed, J., & Salonitis, K. (2023). Supply Chain 4.0: A Machine Learning-Based Bayesian-Optimized LightGBM Model for Predicting Supply Chain Risk. Machines, 11(9), Article 9. https://doi.org/10.3390/machines11090888 Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms (arXiv:1206.2944). arXiv. https://doi.org/10.48550/arXiv.1206.2944