ABAQUS. (2013). 6.13-3. RI Abaqus analysis user’s manual. USA: Dassault Systems Providence. AbdAllah, A. R., AbdelRahman, B., Galal, K. (2023). Numerical study of the seismic performance of fully grouted reinforced masonry shear walls with boundary elements subjected to dynamic loading. Engineering Structures, 295(July), 116804. https://doi.org/10.1016/j.engstruct.2023.116804 AbdelRahman, B., Galal, K. (2020). Influence of pre-wetting, non-shrink grout, and scaling on the compressive strength of grouted concrete masonry prisms. Construction and Building Materials, 241, 117985. https://doi.org/10.1016/j.conbuildmat.2019.117985 Ahmad, S. H., Xie, Y., Yu, T. (1995). Shear ductility of reinforced lightweight concrete beams of normal strength and high strength concrete. Cement and Concrete Composites, 17(2), 147–159. https://doi.org/10.1016/0958-9465(94)00029-X Albutainy, M., Galal, K. (2021). Experimental investigation of reinforced concrete masonry shear walls with C-shaped masonry units boundary elements. Structures, 34(October), 3667–3683. https://doi.org/10.1016/j.istruc.2021.09.080 Albutainy, M., Galal, K. (2024). Effect of boundary element detailing on the seismic performance of reinforced concrete masonry shear walls. Engineering Structures, 300(January 2023), 117164. https://doi.org/10.1016/j.engstruct.2023.117164 Albutainy, M. L. (2016). Seismic Performance of Ductile Reinforced Concrete Masonry Shear Walls with C-Shaped Boundary Elements. Ph.D. Thesis, Building, Civil, and Environmental Engineering, Concordia University, Montreal, Quebec, Canada. Retrieved from https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf Alecci, V., Fagone, M., Rotunno, T., De Stefano, M. (2013). Shear strength of brick masonry walls assembled with different types of mortar. Construction and Building Materials, 40, 1038–1045. https://doi.org/10.1016/j.conbuildmat.2012.11.107 Almeida, J. C., Lourenço, P. B., Barros, J. (2002). Characterization of masonry under uniaxial tension. In VII International Seminar on Structural Masonry for Developing Contries (p. 24). Belo Horizonte, Brazil. Retrieved from http://www.civil.uminho.pt/masonry/Publications/2002_Lourenco_et_al.pdf Aly, N. E. (2019). Seismic performance and height limits of ductile reinforced masonry shear wall buildings with boundary elements. Ph.D. Thesis, Building, Civil, and Environmental Engineering, Concordia University, Montreal, Quebec, Canada. https://doi.org/10.1016/j.engstruct.2019.03.090 Aly, N., Galal, K. (2020a). Effect of Ductile Shear Wall Ratio and Cross-Section Configuration on Seismic Behavior of Reinforced Concrete Masonry Shear Wall Buildings. Journal of Structural Engineering (United States), 146(4), 1–15. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002542 Aly, N., Galal, K. (2020b). Experimental Investigation of Axial Load and Detailing Effects on the Inelastic Response of Reinforced-Concrete Masonry Structural Walls with Boundary Elements. Journal of Structural Engineering, 146(12), 04020259. https://doi.org/10.1061/(asce)st.1943-541x.0002842 Aly, N., Galal, K. (2020c). In-Plane Cyclic Response of High-Rise Reinforced Concrete Masonry Structural Walls with Boundary Elements. Engineering Structures, 219(August 2019), 110771. https://doi.org/10.1016/j.engstruct.2020.110771 Arnau, O., Sandoval, C., Murià-Vila, D. (2015). Determination and validation of input parameters for detailed micro-modelling of partially grouted reinforced masonry walls. Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific, (November). Retrieved from https://www.researchgate.net/publication/289988824 ASCE/SEI. (2017). ASCE Standard, ASCE/SEI, 41-17, Seismic Evaluation and Retrofit of Existing Buildings. ASCE/SEI 41-17. Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784414859 Ashour, A., El-Dakhakhni, W. (2016a). Backbone Model for Displacement-Based Seismic Design of Reinforced Masonry Shear Wall Buildings. Brick and Block Masonry: Trends, Innovations and Challenges - Proceedings of the 16th International Brick and Block Masonry Conference, IBMAC 2016, 65–70. https://doi.org/10.1201/b21889-6 Ashour, A., El-Dakhakhni, W. (2016b). Influence of Floor Diaphragm–Wall Coupling on the System-Level Seismic Performance of an Asymmetrical Reinforced Concrete Block Building. Journal of Structural Engineering, 142(10), 04016071. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001540 Ashour, A., El-Dakhakhni, W., Shedid, M. (2016). Experimental Evaluation of the System-Level Seismic Performance and Robustness of an Asymmetrical Reinforced Concrete Block Building. Journal of Structural Engineering, 142(10), 04016072. https://doi.org/10.1061/(asce)st.1943-541x.0001529 Ashour, A., Galal, K. (2017). Load-Displacement Backbone Model for Flexure-Dominated Reinforced Masonry Shear Walls. In 13TH CANADIAN MASONRY SYMPOSIUM. Halifax, Canada. ASTM. (2009). C 509: Standard specification for cellular elastomeric preformed gasket and sealing material. ASTM. (2012). C 952-12. Standard test method for bond strength of mortar to masonry units. In American Society for Testing and Materials. ASTM. (2015). Standard Test Methods for In Situ Measurement Of Masonry Mortar Joint Shear. ASTM (Vol. 04). ASTM. (2016). C109/109M-16a Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or cube specimens). Annual Book of ASTM Standards, 04, 1–10. https://doi.org/10.1520/C0109 ASTM. (2018a). ASTM C1314 - Standard Test Method for Compressive Strength of Masonry Prisms. ASTM International, 1–10. https://doi.org/10.1520/C1314-18.2 ASTM. (2018b). C39 / C39M-18, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA. ASTM. (2020a). A615/A615M − 20 Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete. ASTM International, West Conshohocken, PA 19428-2959. United States. https://doi.org/10.1520/A0615 ASTM. (2020b). C140/C140M − 20a Standard test methods for Sampling and Testing Concrete Masonry Units and Related Units. ASTM International, West Conshohocken, PA 19428–2959. United States. https://doi.org/10.1520/C0140_C0140M-20A ASTM. (2022). A1064/A1064M − 22 Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete (Vol. i). ASTM A1064M. West Conshohocken, PA: ASTM. https://doi.org/10.1520/A1064_A1064M-22 Astroza, M., Moroni, O., Brzev, S., Tanner, J. (2012). Seismic Performance of Engineered Masonry Buildings in the 2010 Maule Earthquake. Earthquake Spectra, 28(SUPPL.1), 385–406. https://doi.org/10.1193/1.4000040 ATC. (2010). PEER/ATC 72-1: Modeling and Acceptance Criteria for Seismic Design and Analysis of Tall Buildings. Applied Technology Council. Retrieved from http://peer.berkeley.edu/peer_ground_motion_database Banting, B. R., El-Dakhakhni, W. W. (2012). Force- and Displacement-Based Seismic Performance Parameters for Reinforced Masonry Structural Walls with Boundary Elements. Journal of Structural Engineering, 138(12), 1477–1491. https://doi.org/10.1061/(asce)st.1943-541x.0000572 Banting, B. R., El-Dakhakhni, W. W. (2014). Seismic Performance Quantification of Reinforced Masonry Structural Walls with Boundary Elements. Journal of Structural Engineering, 140(5), 04014001. https://doi.org/10.1061/(asce)st.1943-541x.0000895 Berto, L., Saetta, A., Scotta, R., Vitaliani, R. (2004). Shear Behaviour of Masonry Panel: Parametric FE Analyses. International Journal of Solids and Structures, 41(16–17), 4383–4405. https://doi.org/10.1016/j.ijsolstr.2004.02.046 Bolhassani, M. (2015). Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls. Ph.D Thesis, Drexel University. Bolhassani, M., Hamid, A. A., Johnson, C., Moon, F. L., Schultz, A. E. (2016a). New Design Detail to Enhance the Seismic Performance of Ordinary Reinforced Partially Grouted Masonry Structures. Journal of Structural Engineering (United States), 142(12), 1–15. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001620 Bolhassani, M., Hamid, A. A., Moon, F. L. (2016b). Enhancement of Lateral In-Plane Capacity of Partially Grouted Concrete Masonry Shear Walls. Engineering Structures, 108, 59–76. https://doi.org/10.1016/j.engstruct.2015.11.017 Bolhassani, M., Hamid, A., Lau, A., Moon, F. (2015). Simplified Micro Modeling of Partially Grouted Masonry Assemblages. Construction and Building Materials, 83, 159–173. https://doi.org/10.1016/j.conbuildmat.2015.03.021 British Standard. (2002). BS EN 1052-3 Methods of test for masonry-Part 3: Determination of initial shear strength. British standard (Vol. 3). Calderón, S., Arnau, O., Sandoval, C. (2019). Detailed Micro-Modeling Approach and Solution Strategy for Laterally Loaded Reinforced Masonry Shear Walls. Engineering Structures, 201(February), 109786. https://doi.org/10.1016/j.engstruct.2019.109786 Calderón, S., Milani, G., Sandoval, C. (2021a). Simplified micro-modeling of partially-grouted reinforced masonry shear walls with bed-joint reinforcement: Implementation and validation. Engineering Structures, 234(January). https://doi.org/10.1016/j.engstruct.2021.111987 Calderón, S., Sandoval, C., Arnau, O. (2017a). Shear Response of Partially-Grouted Reinforced Masonry Walls with a Central Opening: Testing and Detailed Micro-Modelling. Materials and Design, 118, 122–137. https://doi.org/10.1016/j.matdes.2017.01.019 Calderón, S., Sandoval, C., Arnau, O. (2017b). Shear Response of Partially-Grouted Reinforced Masonry Walls with A Central Opening: Testing and Detailed Micro-Modelling. Materials and Design, 118, 122–137. https://doi.org/10.1016/j.matdes.2017.01.019 Calderón, S., Sandoval, C., Milani, G., Arnau, O. (2021b). Detailed micro-modeling of partially grouted reinforced masonry shear walls: extended validation and parametric study. Archives of Civil and Mechanical Engineering, 21(3), 1–24. https://doi.org/10.1007/s43452-021-00237-z Calvi, G. M., Priestley, M. J. N., Kowalsky, M. J. (2008). Displacement-Based Seismic Design of Structures. Earthquake Spectra, 24(2), 555–557. https://doi.org/10.1193/1.2932170 CEN. (2007). European Norm for Methods of Test for Masonry – Part 3: Determination of Initial Shear Strength. Chaimoon, K., Attard, M. M. (2009). Experimental and numerical investigation of masonry under three-point bending (in-plane). Engineering Structures, 31(1), 103–112. https://doi.org/10.1016/j.engstruct.2008.07.018 Chen, S.-W. J., Hidalgo, P. A., Mayes, R. L., Clough, R. W., Mcniven, H. D. (1978a). Cyclic Loading Tests of Masonry Single Piers Volume 2- Height to Width Ratio Of 1. Chen, S.-W. J., Hidalgo, P. A., Mayes, R. L., Mcniven, H. D., Clough, R. W. (1978b). Cyclic Loading Tests of Masonry Single Piers, Volume 2 - Height to Width Ratio of 2. Chopra, A. K. (2007). Dynamics of structures: Theory and applications to earthquake engineering. 3rd ed. Upper Saddle River, NJ: Pearson Prentice Hall. Citto, C., Wo, S. I., Willam, K. J., Schuller, M. P. (2011). In-Place Evaluation of Masonry Shear Behavior Using Digital Image Analysis. ACI Materials Journal, 108(4). https://doi.org/10.14359/51683114 Correa, M. R. S. (2016). A 20-storey high masonry building in Brazil—Design problems and adopted strategies. In Proc., 16th Int. Brick and Block Masonry Conf (pp. 623–628). CSA. (2014a). Canadian Standards Association (CSA) S304-14, Design of Masonry Structures. CSA Group. Mississauga, Ontario, Canada. CSA. (2014b). Canadian Standards Association A165.1 CSA Standards on concrete masonry units. CSA Group, Mississauga, Ontario, Canada. Retrieved from https://www.researchgate.net/publication/269107473_What_is_governance/link/548173090cf22525dcb61443/download%0Ahttp://www.econ.upf.edu/~reynal/Civil wars_12December2010.pdf%0Ahttps://think-asia.org/handle/11540/8282%0Ahttps://www.jstor.org/stable/41857625 CSA. (2014c). Canadian Standards Association CSA-A179-14 Mortar and grout for unit masonry (Vol. 14). CSA. (2024). Canadian Standards Association (CSA) S304-24, Design of Masonry Structures. Mississauga, Ontario, Canada: CSA Group. D’Altri, A. M., de Miranda, S., Castellazzi, G., Sarhosis, V. (2018). A 3D Detailed Micro-Model for the In-Plane and Out-Of-Plane Numerical Analysis of Masonry Panels. Computers and Structures, 206, 18–30. https://doi.org/10.1016/j.compstruc.2018.06.007 Drysdale, R. G., Hamid, A. A. (2005). Masonry Structures Behaviour and Design. Canada Masonry Design Centre, Mississauga, Ontario. Elmapruk, J., ElGawady, M. A., Hassanli, R. (2020). Experimental and Analytical Study on the Shear-Strength of Partially Grouted Masonry Walls. Journal of Structural Engineering, 146(8), 04020147. https://doi.org/10.1061/(asce)st.1943-541x.0002704 Elmapruk, J. H. (2010). Shear Strength of Partially Grouted. WASHINGTON STATE UNIVERSITY. Elmeligy, O., AbdelRahman, B., Galal, K. (2024a). Experimental investigation of the compressive and shear behaviours of grouted and hollow masonry constructed with PVA fibre-reinforced mortar and grout. Construction and Building Materials, 415(January), 134954. https://doi.org/10.1016/j.conbuildmat.2024.134954 Elmeligy, O., AbdelRahman, B., Galal, K. (2024b). Numerical assessment of TMS 402/602-22 and CSA S304-14 seismic design provisions for partially grouted reinforced masonry shear walls failing in flexure. Engineering Structures, 303(December 2023), 117370. https://doi.org/10.1016/j.engstruct.2023.117370 Elmeligy, O., Aly, N., Galal, K. (2021). Sensitivity analysis of the numerical simulations of partially grouted reinforced masonry shear walls. Engineering Structures, 245(March), 112876. https://doi.org/10.1016/j.engstruct.2021.112876 Elmeligy, O. M. M. (2023). In-plane Cyclic Response of Slender Rectangular and Flanged Partially Grouted Reinforced Masonry Shear Walls Failing in Flexure. Concordia University, Montreal, Canada. Ewing, R. D., El-Mustapha, A. M., Karlotis, J. C. (1990). Fem/I A Finite Element Computer Program for the Nonlinear Static Analysis of Reinforced Masonry Building Components. U.S. - Japan Coordinated Program for Masonry Building Research (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004 Ezzeldin, M., El-Dakhakhni, W., Wiebe, L. (2018). Reinforced Masonry Building Seismic Response Models for ASCE/SEI-41. Journal of Structural Engineering, 144(1), 04017175. https://doi.org/10.1061/(asce)st.1943-541x.0001914 Ezzeldin, M., Wiebe, L., El-Dakhakhni, W. (2016). Seismic Collapse Risk Assessment of Reinforced Masonry Walls with Boundary Elements Using the FEMA P695 Methodology. Journal of Structural Engineering, 142(11). https://doi.org/10.1061/(asce)st.1943-541x.0001579 Fava, M., Munari, M., da Porto, F., Modena, C. (2016). Seismic vulnerability assessment of existing masonry buildings by nonlinear static analyses and fragility curves. Brick and Block Masonry: Trends, Innovations and Challenges - Proceedings of the 16th International Brick and Block Masonry Conference, IBMAC 2016, 2409–2416. https://doi.org/10.1201/b21889-315 Gilbert, R., Warner, R. (1978). Tension Stiffening in Reinforced Concrete Slabs. Journal of the Structural Division, 104(12), 1885–1900. Gouda, O., Hassanein, A., Youssef, T., Galal, K. (2021). Stress-Strain Behaviour of Masonry Prisms Constructed with Glass Fibre-Reinforced Grout. Construction and Building Materials, 267, 120984. https://doi.org/10.1016/j.conbuildmat.2020.120984 Halucha, J. A. (2002). In-Plane Shear Behaviour of Reinforced Concrete Masonry Panels Under Biaxial Loading. M.A.Sc. Thesis, McMaster University. Hamilton, Ontario. Hamedzadeh, A. (2013). On The Shear Strength Of Partially Grouted Concrete Masonry. CALGARY, ALBERTA. https://doi.org/10.11575/PRISM/27195 Hamid, A. A., Gouda, M. G. (1991). Partially Reinforced Concrete Masonry. Brick and Block Masonry, 1, 368–378. Hansen, K. F., Nykanen, E., Gottfredsen, F. R. (1998). Shear behaviour of bed joints at different levels of precompression. Masonry International, 12(2), 70–78. Hashemi, A., Mosalam, K. M. (2006). Shake-table experiment on reinforced concrete structure containing masonry infill wall. Earthquake Engineering & Structural Dynamics, 35(14), 1827–1852. https://doi.org/10.1002/eqe.612 Hendry, A. W. (1998). Structural Masonry. London: Macmillan Education UK. https://doi.org/10.1007/978-1-349-14827-1 Hidalgo, P. A., Mayes, R. L., Mcniven, H. D., Clough, R. (1978). Cyclic Loading Tests of Masonry Single Piers, Volume 1. Height to Width Ratio Of 2. Hoque, N. (2013). In-Plane Cyclic Testing of Reinforced Concrete Masonry Walls to Assess the Effect of Varying Reinforcement Anchorage and Boundary Conditions. CALGARY, ALBERTA. https://doi.org/10.11575/PRISM/26545 Hsu, L. S., Hsu, C.-T. T. (1994). Complete Stress-Strain Behaviour of High-Strength Concrete Under Compression. Magazine of Concrete Research, 46(169), 301–312. https://doi.org/10.1680/macr.1994.46.169.301 Inc., T. M. (2022). MATLAB version: 9.13.0 (R2022b). Natick, Massachusetts, United States: The MathWorks Inc. Retrieved from https://www.mathworks.com Johnson, C. A., Schultz, A. E. (2014). Simulated Seismic Testing of Partially-Grouted Masonry Subassemblages. NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering. https://doi.org/10.4231/D3HX15R69 Khalaf, F. M. (2005). New Test for Determination of Masonry Tensile Bond Strength. Journal of Materials in Civil Engineering, 17(6), 725–732. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:6(725) Khan, M., Cao, M., Ali, M. (2018). Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete. Construction and Building Materials, 192, 742–753. https://doi.org/10.1016/j.conbuildmat.2018.10.159 Lin, C.-S., Scordelis, A. C. (1975). Nonlinear Analysis of RC Shells of General Form. Journal of the Structural Division, 101(3), 523–538. Lizárraga, J. F., Pérez-Gavilán, J. J. (2017). Parameter estimation for nonlinear analysis of multi-perforated concrete masonry walls. Construction and Building Materials, 141, 353–365. https://doi.org/10.1016/j.conbuildmat.2017.03.008 Lourenço, P. (1996). Computational Strategy for Masonry Structures. Lourenço, P. B., Barros, J. O., Oliveira, J. T. (2004). Shear testing of stack bonded masonry. Construction and Building Materials, 18(2), 125–132. https://doi.org/10.1016/j.conbuildmat.2003.08.018 Lourenço, P. B., Ramos, L. F. (2004). Characterization of Cyclic Behavior of Dry Masonry Joints. Journal of Structural Engineering, 130(5), 779–786. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(779) Lourenço, P. B., Rots, J. G. (1997). Multisurface Interface Model for Analysis of Masonry Structures. Journal of Engineering Mechanics, 123(7), 660–668. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660) Magenes, G., Calvi, G. M. (1997). In-plane seismic response of brick masonry walls. Earthquake Engineering & Structural Dynamics, 26(11), 1091–1112. https://doi.org/10.1002/(SICI)1096-9845(199711)26:11<1091::AID-EQE693>3.0.CO;2-6 Mahrous, A., AbdelRahman, B., Galal, K. (2022). Seismic response analysis of reinforced masonry core walls with boundary elements. Engineering Structures, 270(September), 114882. https://doi.org/10.1016/j.engstruct.2022.114882 Maleki, M. (2008). Behaviour of Partially Grouted Reinforced Masonry Shear Walls Under Cyclic Reversed Loading. McMaster University. Medeiros, K. A. S., Chavez, K. H., Fonseca, F. S., Parsekian, G. A., Shrive, N. G. (2021). Parametric study of multi-story, perforated, partially grouted masonry walls subjected to in-plane cyclic actions. Canadian Journal of Civil Engineering, 48(8), 1046–1055. https://doi.org/10.1139/cjce-2020-0128 Meli, R. (1973). Behaviour of masonry walls under lateral loads. In The 5th World Congress on Earthquake Engineering (pp. 853–862). Milani, G. (2008). 3D Upper Bound Limit Analysis of Multi-Leaf Masonry Walls. International Journal of Mechanical Sciences, 50(4), 817–836. https://doi.org/10.1016/j.ijmecsci.2007.11.003 Milani, G. (2010). 3D FE Limit Analysis Model for Multi-Layer Masonry Structures Reinforced with FRP Strips. International Journal of Mechanical Sciences, 52(6), 784–803. https://doi.org/10.1016/j.ijmecsci.2010.01.004 Milani, G. (2011a). Simple Homogenization Model for the Non-Linear Analysis of In-Plane Loaded Masonry Walls. Computers and Structures, 89(17–18), 1586–1601. https://doi.org/10.1016/j.compstruc.2011.05.004 Milani, G. (2011b). Simple Lower Bound Limit Analysis Homogenization Model for In- And Out-Of-Plane Loaded Masonry Walls. Construction and Building Materials, 25(12), 4426–4443. https://doi.org/10.1016/j.conbuildmat.2011.01.012 Minaie, E. (2009). Behavior and Vulnerability of Reinforced Masonry Shear Walls. Ph.D Thesis, Drexel University. Minaie, E., Moon, F. L., Hamid, A. A. (2014). Nonlinear Finite Element Modeling of Reinforced Masonry Shear Walls for Bidirectional Loading Response. Finite Elements in Analysis and Design, 84, 44–53. https://doi.org/10.1016/j.finel.2014.02.001 Minaie, E., Mota, M., Moon, F. L., Hamid, A. A. (2010). In-Plane Behavior of Partially Grouted Reinforced Concrete Masonry Shear Walls. Journal of Structural Engineering, 136(9), 1089–1097. https://doi.org/10.1061/(asce)st.1943-541x.0000206 NAHB Research Center. (1998). Building Concrete Masonry Homes :Design and Construction Issues. Upper Marlboro, MD, USA. Nasiri, E., Liu, Y. (2017). Development of a detailed 3D FE model for analysis of the in-plane behaviour of masonry infilled concrete frames. Engineering Structures, 143, 603–616. https://doi.org/10.1016/j.engstruct.2017.04.049 Nayal, R., Rasheed, H. A. (2006). Tension Stiffening Model for Concrete Beams Reinforced with Steel and FRP Bars. Journal of Materials in Civil Engineering, 18(6), 831–841. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(831) Nolph, H. M. (2010). In-Plane Shear Performance of Partially Grouted Masonry Shear Walls. Master. Thesis, Department of Civil and Environmental Engineering, WASHINGTON STATE UNIVERSITY. Nolph, S. M., ElGawady, M. A. (2012). Static Cyclic Response of Partially Grouted Masonry Shear Walls. Journal of Structural Engineering, 138(7), 864–879. https://doi.org/10.1061/(asce)st.1943-541x.0000529 Paulay, T. (1997). Seismic Torsional Effects on Ductile Structural Wall Systems. Journal of Earthquake Engineering, 1(4), 721–745. https://doi.org/10.1080/13632469708962385 Paulay, T., Priestly, M. J. N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9780470172841 Priestley, M. J. N., Calvi, G. M., Kowalsky, M. J. (2007a). Displacement based seismic design of stuctures. IUSS Press, Pavia, Italy. Priestley, M. J. N., Elder, D. M. G. (1982). Cyclic Loading Tests of Slender Concrete Masonry Shear Walls. Bulletin of the New Zealand National Society for Earthquake Engineering, 15(1), 3–21. https://doi.org/10.5459/bnzsee.15.1.3-21 Priestley, M. J. N., G.M. Calvi, M.J.Kowalsky. (2007b). Direct Displacement-Based Seismic Design of Structures. In NZSEE Conference (Vol. 24, pp. 555–557). https://doi.org/10.1193/1.2932170 Priestley, N., Calvi, G., Kowalsky, M. (2007c). Displacement-Based Seismic Design of Structures. IUSS Press, Pavia, Italy. Redmond, L., Stavridis, A., DesRoches, R. (2014). Development of a Finite Element Model for Partially Grouted Masonry. NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, (September 2015). https://doi.org/10.4231/D3PN8XG1V Rizaee. (2015). Assessing Bond Beam Horizontal Reinforcement Efficacy with Different End Anchorage Conditions in Concrete Block Masonry Shear Walls. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. CALGARY, ALBERTA. https://doi.org/10.11575/PRISM/25017 Sandoval, C., Arnau, O. (2017). Experimental characterization and detailed micro-modeling of multi-perforated clay brick masonry structural response. Materials and Structures/Materiaux et Constructions, 50(1). https://doi.org/10.1617/s11527-016-0888-3 Sarhosis, V., Lemos, J. V. (2018). A Detailed Micro-Modelling Approach for the Structural Analysis of Masonry Assemblages. Computers and Structures, 206, 66–81. https://doi.org/10.1016/j.compstruc.2018.06.003 Scanlon, A., Murray, D. W. (1974). Time Dependent Deflections of Reinforced Concrete Slab Deflections. Journal of the Structural Division, 100(9), 1911– 1924. Schultz, A. E. (1994). NIST Research Program on the Seismic Resistance of Partially-Grouted Masonry Shear Walls. National Institute of Standards and Technology. Schultz, A. E., Johnson, C. A. (2019). Seismic Resistance Mechanisms in Partially Grouted Shear Walls with New Design Details. In 13th North American Masonry Conf. The Masonry Society. Salt Lake City, UT, USA. Shedid, M. T. (2009). Strategies To Enhance Seismic Performance of Reinforced Masonry Shear Walls. (Canada): McMaster University; 2009. Ph.D. thesis. Shedid, M. T., El-Dakhakhni, W. W., Drysdale, R. G. (2009). Behavior of fully grouted reinforced concrete masonry shear walls failing in flexure: Analysis. Engineering Structures, 31(9), 2032–2044. https://doi.org/10.1016/j.engstruct.2009.03.006 Shedid, M. T., El-Dakhakhni, W. W., Drysdale, R. G. (2010a). Alternative Strategies to Enhance the Seismic Performance of Reinforced Concrete-Block Shear Wall Systems. Journal of Structural Engineering, 136(6), 676–689. https://doi.org/10.1061/(asce)st.1943-541x.0000164 Shedid, M. T., El-Dakhakhni, W. W., Drysdale, R. G. (2010b). Characteristics of Rectangular, Flanged, and End-Confined Reinforced Concrete Masonry Shear Walls for Seismic Design. Journal of Structural Engineering, 136(12), 1471–1482. https://doi.org/10.1061/(asce)st.1943-541x.0000253 Shing, P. B., Lotfi, H. R., Barzegarmehrabi, A., Brunner, J. (1992). Finite Element Analysis of Shear Resistance of Masonry Wall Panels with and without Confining Frames. Earthquake Engineering, Tenth World Conference. Siyam, M. A., El-Dakhakhni, W. W., Shedid, M. T., Drysdale, R. G. (2016). Seismic Response Evaluation of Ductile Reinforced Concrete Block Structural Walls. I: Experimental Results and Force-Based Design Parameters. Journal of Performance of Constructed Facilities, 30(4), 1–14. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000794 Stavridis, A., Shing, P. B. (2010). Finite-element modeling of nonlinear behavior of masonry-infilled RC frames. Journal of Structural Engineering, 136(3), 285–296. https://doi.org/10.1061/(ASCE)ST.1943-541X.116 Tagel-Din, H., Meguro, K. (2000). APPLIED ELEMENT METHOD FOR DYNAMIC LARGE DEFORMATION ANALYSIS OF STRUCTURES. Doboku Gakkai Ronbunshu, 2000(661), 1–10. https://doi.org/10.2208/jscej.2000.661_1 Taylor-Firth, A., Taylor, I. F. (1990). A bond tensile strength test for use in assessing the compatibility of Brick/Mortar interfaces. Construction and Building Materials, 4(2), 58–63. https://doi.org/10.1016/0950-0618(90)90001-H Thurston, S. J., Hutchison, D. L. (1982). Reinforced Masonry Shear Walls: Cyclic Load Tests in Contraflexure. Bulletin of the New Zealand National Society for Earthquake Engineering, 15(1), 27–45. Tomazevic, M. (1999). Earthquake-Resistant Design of Masonry Buildings (Vol. 1). PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO. https://doi.org/10.1142/p055 Tomaževič, M. (1999). Earthquake-resistant design of masonry buildings. TA - TT -. London, Singapore SE - xii, 268 pages : illustrations ; 23 cm.: Imperial College Press ; Distributed by World Scientific London, Singapore. https://doi.org/LK - https://worldcat.org/title/40776879 Usman, M., Farooq, S. H., Umair, M., Hanif, A. (2020). Axial compressive behavior of confined steel fiber reinforced high strength concrete. Construction and Building Materials, 230, 117043. https://doi.org/10.1016/j.conbuildmat.2019.117043 Valdebenito, G., Alvarado, D., Sandoval, C., Aguilar, V. (2015). Terremoto De Iquique Mw=8,2 - 01 Abril 2014: Daños Observados Y Efectos De Sitio En Estructuras De Albañilería. In XI Congr. Chil. Sismol. e Ing. Sísmica 922 ACHISINA. 18-20 March, Santiago. Chile. Van Der Pluijm, R. (1997). Non-linear behaviour of masonry under tension. Heron, 42(1), 25–48. Van der Pluijm, R., Rutten, H. S., Ceelen, M. (2000). Shear behaviour of bed joints. In conference; 12th International Brick/Block Masonry Conference; 2000-06-25; 2000-06-28 (p. 12). Van derPluijm, R. (1999). Out-of-Plane Bending of Masonry Behaviour and Strength. (Phd Thesis) Technische Universiteit Eindhoven. https://doi.org/10.6100/IR528212 Vebo, A., Ghali, A. (1977). Moment-Curvature Relation of Reinforced Concrete Slabs. Journal of the Structural Division, 103(3), 515–531. Voon, K. C., Ingham, J. M. (2003). SHEAR STRENGTH OF CONCRETE MASONRY WALLS. Zhang, Z., Murcia-Delso, J., Sandoval, C., Araya-Letelier, G., Wang, F. (2021). In-plane shear strength and damage fragility functions for partially-grouted reinforced masonry walls with bond-beam reinforcement. Engineering Structures, 242. https://doi.org/10.1016/j.engstruct.2021.112569 ABAQUS. (2013). 6.13-3. RI Abaqus analysis user’s manual. USA: Dassault Systems Providence. AbdAllah, A. R., AbdelRahman, B., Galal, K. (2023). Numerical study of the seismic performance of fully grouted reinforced masonry shear walls with boundary elements subjected to dynamic loading. Engineering Structures, 295(July), 116804. https://doi.org/10.1016/j.engstruct.2023.116804 AbdelRahman, B., Galal, K. (2020). Influence of pre-wetting, non-shrink grout, and scaling on the compressive strength of grouted concrete masonry prisms. Construction and Building Materials, 241, 117985. https://doi.org/10.1016/j.conbuildmat.2019.117985 Ahmad, S. H., Xie, Y., Yu, T. (1995). Shear ductility of reinforced lightweight concrete beams of normal strength and high strength concrete. Cement and Concrete Composites, 17(2), 147–159. https://doi.org/10.1016/0958-9465(94)00029-X Albutainy, M., Galal, K. (2021). Experimental investigation of reinforced concrete masonry shear walls with C-shaped masonry units boundary elements. Structures, 34(October), 3667–3683. https://doi.org/10.1016/j.istruc.2021.09.080 Albutainy, M., Galal, K. (2024). Effect of boundary element detailing on the seismic performance of reinforced concrete masonry shear walls. Engineering Structures, 300(January 2023), 117164. https://doi.org/10.1016/j.engstruct.2023.117164 Albutainy, M. L. (2016). Seismic Performance of Ductile Reinforced Concrete Masonry Shear Walls with C-Shaped Boundary Elements. Ph.D. Thesis, Building, Civil, and Environmental Engineering, Concordia University, Montreal, Quebec, Canada. Retrieved from https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf Alecci, V., Fagone, M., Rotunno, T., De Stefano, M. (2013). Shear strength of brick masonry walls assembled with different types of mortar. Construction and Building Materials, 40, 1038–1045. https://doi.org/10.1016/j.conbuildmat.2012.11.107 Almeida, J. C., Lourenço, P. B., Barros, J. (2002). Characterization of masonry under uniaxial tension. In VII International Seminar on Structural Masonry for Developing Contries (p. 24). Belo Horizonte, Brazil. Retrieved from http://www.civil.uminho.pt/masonry/Publications/2002_Lourenco_et_al.pdf Aly, N. E. (2019). Seismic performance and height limits of ductile reinforced masonry shear wall buildings with boundary elements. Ph.D. Thesis, Building, Civil, and Environmental Engineering, Concordia University, Montreal, Quebec, Canada. https://doi.org/10.1016/j.engstruct.2019.03.090 Aly, N., Galal, K. (2020a). Effect of Ductile Shear Wall Ratio and Cross-Section Configuration on Seismic Behavior of Reinforced Concrete Masonry Shear Wall Buildings. Journal of Structural Engineering (United States), 146(4), 1–15. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002542 Aly, N., Galal, K. (2020b). Experimental Investigation of Axial Load and Detailing Effects on the Inelastic Response of Reinforced-Concrete Masonry Structural Walls with Boundary Elements. Journal of Structural Engineering, 146(12), 04020259. https://doi.org/10.1061/(asce)st.1943-541x.0002842 Aly, N., Galal, K. (2020c). In-Plane Cyclic Response of High-Rise Reinforced Concrete Masonry Structural Walls with Boundary Elements. Engineering Structures, 219(August 2019), 110771. https://doi.org/10.1016/j.engstruct.2020.110771 Arnau, O., Sandoval, C., Murià-Vila, D. (2015). Determination and validation of input parameters for detailed micro-modelling of partially grouted reinforced masonry walls. Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific, (November). Retrieved from https://www.researchgate.net/publication/289988824 ASCE/SEI. (2017). ASCE Standard, ASCE/SEI, 41-17, Seismic Evaluation and Retrofit of Existing Buildings. ASCE/SEI 41-17. Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784414859 Ashour, A., El-Dakhakhni, W. (2016a). Backbone Model for Displacement-Based Seismic Design of Reinforced Masonry Shear Wall Buildings. Brick and Block Masonry: Trends, Innovations and Challenges - Proceedings of the 16th International Brick and Block Masonry Conference, IBMAC 2016, 65–70. https://doi.org/10.1201/b21889-6 Ashour, A., El-Dakhakhni, W. (2016b). Influence of Floor Diaphragm–Wall Coupling on the System-Level Seismic Performance of an Asymmetrical Reinforced Concrete Block Building. Journal of Structural Engineering, 142(10), 04016071. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001540 Ashour, A., El-Dakhakhni, W., Shedid, M. (2016). Experimental Evaluation of the System-Level Seismic Performance and Robustness of an Asymmetrical Reinforced Concrete Block Building. Journal of Structural Engineering, 142(10), 04016072. https://doi.org/10.1061/(asce)st.1943-541x.0001529 Ashour, A., Galal, K. (2017). Load-Displacement Backbone Model for Flexure-Dominated Reinforced Masonry Shear Walls. In 13TH CANADIAN MASONRY SYMPOSIUM. Halifax, Canada. ASTM. (2009). C 509: Standard specification for cellular elastomeric preformed gasket and sealing material. ASTM. (2012). C 952-12. Standard test method for bond strength of mortar to masonry units. In American Society for Testing and Materials. ASTM. (2015). Standard Test Methods for In Situ Measurement Of Masonry Mortar Joint Shear. ASTM (Vol. 04). ASTM. (2016). C109/109M-16a Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or cube specimens). Annual Book of ASTM Standards, 04, 1–10. https://doi.org/10.1520/C0109 ASTM. (2018a). ASTM C1314 - Standard Test Method for Compressive Strength of Masonry Prisms. ASTM International, 1–10. https://doi.org/10.1520/C1314-18.2 ASTM. (2018b). C39 / C39M-18, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA. ASTM. (2020a). A615/A615M − 20 Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete. ASTM International, West Conshohocken, PA 19428-2959. United States. https://doi.org/10.1520/A0615 ASTM. (2020b). C140/C140M − 20a Standard test methods for Sampling and Testing Concrete Masonry Units and Related Units. ASTM International, West Conshohocken, PA 19428–2959. United States. https://doi.org/10.1520/C0140_C0140M-20A ASTM. (2022). A1064/A1064M − 22 Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete (Vol. i). ASTM A1064M. West Conshohocken, PA: ASTM. https://doi.org/10.1520/A1064_A1064M-22 Astroza, M., Moroni, O., Brzev, S., Tanner, J. (2012). Seismic Performance of Engineered Masonry Buildings in the 2010 Maule Earthquake. Earthquake Spectra, 28(SUPPL.1), 385–406. https://doi.org/10.1193/1.4000040 ATC. (2010). PEER/ATC 72-1: Modeling and Acceptance Criteria for Seismic Design and Analysis of Tall Buildings. Applied Technology Council. Retrieved from http://peer.berkeley.edu/peer_ground_motion_database Banting, B. R., El-Dakhakhni, W. W. (2012). Force- and Displacement-Based Seismic Performance Parameters for Reinforced Masonry Structural Walls with Boundary Elements. Journal of Structural Engineering, 138(12), 1477–1491. https://doi.org/10.1061/(asce)st.1943-541x.0000572 Banting, B. R., El-Dakhakhni, W. W. (2014). Seismic Performance Quantification of Reinforced Masonry Structural Walls with Boundary Elements. Journal of Structural Engineering, 140(5), 04014001. https://doi.org/10.1061/(asce)st.1943-541x.0000895 Berto, L., Saetta, A., Scotta, R., Vitaliani, R. (2004). Shear Behaviour of Masonry Panel: Parametric FE Analyses. International Journal of Solids and Structures, 41(16–17), 4383–4405. https://doi.org/10.1016/j.ijsolstr.2004.02.046 Bolhassani, M. (2015). Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls. Ph.D Thesis, Drexel University. Bolhassani, M., Hamid, A. A., Johnson, C., Moon, F. L., Schultz, A. E. (2016a). New Design Detail to Enhance the Seismic Performance of Ordinary Reinforced Partially Grouted Masonry Structures. Journal of Structural Engineering (United States), 142(12), 1–15. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001620 Bolhassani, M., Hamid, A. A., Moon, F. L. (2016b). Enhancement of Lateral In-Plane Capacity of Partially Grouted Concrete Masonry Shear Walls. Engineering Structures, 108, 59–76. https://doi.org/10.1016/j.engstruct.2015.11.017 Bolhassani, M., Hamid, A., Lau, A., Moon, F. (2015). Simplified Micro Modeling of Partially Grouted Masonry Assemblages. Construction and Building Materials, 83, 159–173. https://doi.org/10.1016/j.conbuildmat.2015.03.021 British Standard. (2002). BS EN 1052-3 Methods of test for masonry-Part 3: Determination of initial shear strength. British standard (Vol. 3). Calderón, S., Arnau, O., Sandoval, C. (2019). Detailed Micro-Modeling Approach and Solution Strategy for Laterally Loaded Reinforced Masonry Shear Walls. Engineering Structures, 201(February), 109786. https://doi.org/10.1016/j.engstruct.2019.109786 Calderón, S., Milani, G., Sandoval, C. (2021a). Simplified micro-modeling of partially-grouted reinforced masonry shear walls with bed-joint reinforcement: Implementation and validation. Engineering Structures, 234(January). https://doi.org/10.1016/j.engstruct.2021.111987 Calderón, S., Sandoval, C., Arnau, O. (2017a). Shear Response of Partially-Grouted Reinforced Masonry Walls with a Central Opening: Testing and Detailed Micro-Modelling. Materials and Design, 118, 122–137. https://doi.org/10.1016/j.matdes.2017.01.019 Calderón, S., Sandoval, C., Arnau, O. (2017b). Shear Response of Partially-Grouted Reinforced Masonry Walls with A Central Opening: Testing and Detailed Micro-Modelling. Materials and Design, 118, 122–137. https://doi.org/10.1016/j.matdes.2017.01.019 Calderón, S., Sandoval, C., Milani, G., Arnau, O. (2021b). Detailed micro-modeling of partially grouted reinforced masonry shear walls: extended validation and parametric study. Archives of Civil and Mechanical Engineering, 21(3), 1–24. https://doi.org/10.1007/s43452-021-00237-z Calvi, G. M., Priestley, M. J. N., Kowalsky, M. J. (2008). Displacement-Based Seismic Design of Structures. Earthquake Spectra, 24(2), 555–557. https://doi.org/10.1193/1.2932170 CEN. (2007). European Norm for Methods of Test for Masonry – Part 3: Determination of Initial Shear Strength. Chaimoon, K., Attard, M. M. (2009). Experimental and numerical investigation of masonry under three-point bending (in-plane). Engineering Structures, 31(1), 103–112. https://doi.org/10.1016/j.engstruct.2008.07.018 Chen, S.-W. J., Hidalgo, P. A., Mayes, R. L., Clough, R. W., Mcniven, H. D. (1978a). Cyclic Loading Tests of Masonry Single Piers Volume 2- Height to Width Ratio Of 1. Chen, S.-W. J., Hidalgo, P. A., Mayes, R. L., Mcniven, H. D., Clough, R. W. (1978b). Cyclic Loading Tests of Masonry Single Piers, Volume 2 - Height to Width Ratio of 2. Chopra, A. K. (2007). Dynamics of structures: Theory and applications to earthquake engineering. 3rd ed. Upper Saddle River, NJ: Pearson Prentice Hall. Citto, C., Wo, S. I., Willam, K. J., Schuller, M. P. (2011). In-Place Evaluation of Masonry Shear Behavior Using Digital Image Analysis. ACI Materials Journal, 108(4). https://doi.org/10.14359/51683114 Correa, M. R. S. (2016). A 20-storey high masonry building in Brazil—Design problems and adopted strategies. In Proc., 16th Int. Brick and Block Masonry Conf (pp. 623–628). CSA. (2014a). Canadian Standards Association (CSA) S304-14, Design of Masonry Structures. CSA Group. Mississauga, Ontario, Canada. CSA. (2014b). Canadian Standards Association A165.1 CSA Standards on concrete masonry units. CSA Group, Mississauga, Ontario, Canada. Retrieved from https://www.researchgate.net/publication/269107473_What_is_governance/link/548173090cf22525dcb61443/download%0Ahttp://www.econ.upf.edu/~reynal/Civil wars_12December2010.pdf%0Ahttps://think-asia.org/handle/11540/8282%0Ahttps://www.jstor.org/stable/41857625 CSA. (2014c). Canadian Standards Association CSA-A179-14 Mortar and grout for unit masonry (Vol. 14). CSA. (2024). Canadian Standards Association (CSA) S304-24, Design of Masonry Structures. Mississauga, Ontario, Canada: CSA Group. D’Altri, A. M., de Miranda, S., Castellazzi, G., Sarhosis, V. (2018). A 3D Detailed Micro-Model for the In-Plane and Out-Of-Plane Numerical Analysis of Masonry Panels. Computers and Structures, 206, 18–30. https://doi.org/10.1016/j.compstruc.2018.06.007 Drysdale, R. G., Hamid, A. A. (2005). Masonry Structures Behaviour and Design. Canada Masonry Design Centre, Mississauga, Ontario. Elmapruk, J., ElGawady, M. A., Hassanli, R. (2020). Experimental and Analytical Study on the Shear-Strength of Partially Grouted Masonry Walls. Journal of Structural Engineering, 146(8), 04020147. https://doi.org/10.1061/(asce)st.1943-541x.0002704 Elmapruk, J. H. (2010). Shear Strength of Partially Grouted. WASHINGTON STATE UNIVERSITY. Elmeligy, O., AbdelRahman, B., Galal, K. (2024a). Experimental investigation of the compressive and shear behaviours of grouted and hollow masonry constructed with PVA fibre-reinforced mortar and grout. Construction and Building Materials, 415(January), 134954. https://doi.org/10.1016/j.conbuildmat.2024.134954 Elmeligy, O., AbdelRahman, B., Galal, K. (2024b). Numerical assessment of TMS 402/602-22 and CSA S304-14 seismic design provisions for partially grouted reinforced masonry shear walls failing in flexure. Engineering Structures, 303(December 2023), 117370. https://doi.org/10.1016/j.engstruct.2023.117370 Elmeligy, O., Aly, N., Galal, K. (2021). Sensitivity analysis of the numerical simulations of partially grouted reinforced masonry shear walls. Engineering Structures, 245(March), 112876. https://doi.org/10.1016/j.engstruct.2021.112876 Elmeligy, O. M. M. (2023). In-plane Cyclic Response of Slender Rectangular and Flanged Partially Grouted Reinforced Masonry Shear Walls Failing in Flexure. Concordia University, Montreal, Canada. Ewing, R. D., El-Mustapha, A. M., Karlotis, J. C. (1990). Fem/I A Finite Element Computer Program for the Nonlinear Static Analysis of Reinforced Masonry Building Components. U.S. - Japan Coordinated Program for Masonry Building Research (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004 Ezzeldin, M., El-Dakhakhni, W., Wiebe, L. (2018). Reinforced Masonry Building Seismic Response Models for ASCE/SEI-41. Journal of Structural Engineering, 144(1), 04017175. https://doi.org/10.1061/(asce)st.1943-541x.0001914 Ezzeldin, M., Wiebe, L., El-Dakhakhni, W. (2016). Seismic Collapse Risk Assessment of Reinforced Masonry Walls with Boundary Elements Using the FEMA P695 Methodology. Journal of Structural Engineering, 142(11). https://doi.org/10.1061/(asce)st.1943-541x.0001579 Fava, M., Munari, M., da Porto, F., Modena, C. (2016). Seismic vulnerability assessment of existing masonry buildings by nonlinear static analyses and fragility curves. Brick and Block Masonry: Trends, Innovations and Challenges - Proceedings of the 16th International Brick and Block Masonry Conference, IBMAC 2016, 2409–2416. https://doi.org/10.1201/b21889-315 Gilbert, R., Warner, R. (1978). Tension Stiffening in Reinforced Concrete Slabs. Journal of the Structural Division, 104(12), 1885–1900. Gouda, O., Hassanein, A., Youssef, T., Galal, K. (2021). Stress-Strain Behaviour of Masonry Prisms Constructed with Glass Fibre-Reinforced Grout. Construction and Building Materials, 267, 120984. https://doi.org/10.1016/j.conbuildmat.2020.120984 Halucha, J. A. (2002). In-Plane Shear Behaviour of Reinforced Concrete Masonry Panels Under Biaxial Loading. M.A.Sc. Thesis, McMaster University. Hamilton, Ontario. Hamedzadeh, A. (2013). On The Shear Strength Of Partially Grouted Concrete Masonry. CALGARY, ALBERTA. https://doi.org/10.11575/PRISM/27195 Hamid, A. A., Gouda, M. G. (1991). Partially Reinforced Concrete Masonry. Brick and Block Masonry, 1, 368–378. Hansen, K. F., Nykanen, E., Gottfredsen, F. R. (1998). Shear behaviour of bed joints at different levels of precompression. Masonry International, 12(2), 70–78. Hashemi, A., Mosalam, K. M. (2006). Shake-table experiment on reinforced concrete structure containing masonry infill wall. Earthquake Engineering & Structural Dynamics, 35(14), 1827–1852. https://doi.org/10.1002/eqe.612 Hendry, A. W. (1998). Structural Masonry. London: Macmillan Education UK. https://doi.org/10.1007/978-1-349-14827-1 Hidalgo, P. A., Mayes, R. L., Mcniven, H. D., Clough, R. (1978). Cyclic Loading Tests of Masonry Single Piers, Volume 1. Height to Width Ratio Of 2. Hoque, N. (2013). In-Plane Cyclic Testing of Reinforced Concrete Masonry Walls to Assess the Effect of Varying Reinforcement Anchorage and Boundary Conditions. CALGARY, ALBERTA. https://doi.org/10.11575/PRISM/26545 Hsu, L. S., Hsu, C.-T. T. (1994). Complete Stress-Strain Behaviour of High-Strength Concrete Under Compression. Magazine of Concrete Research, 46(169), 301–312. https://doi.org/10.1680/macr.1994.46.169.301 Inc., T. M. (2022). MATLAB version: 9.13.0 (R2022b). Natick, Massachusetts, United States: The MathWorks Inc. Retrieved from https://www.mathworks.com Johnson, C. A., Schultz, A. E. (2014). Simulated Seismic Testing of Partially-Grouted Masonry Subassemblages. NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering. https://doi.org/10.4231/D3HX15R69 Khalaf, F. M. (2005). New Test for Determination of Masonry Tensile Bond Strength. Journal of Materials in Civil Engineering, 17(6), 725–732. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:6(725) Khan, M., Cao, M., Ali, M. (2018). Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete. Construction and Building Materials, 192, 742–753. https://doi.org/10.1016/j.conbuildmat.2018.10.159 Lin, C.-S., Scordelis, A. C. (1975). Nonlinear Analysis of RC Shells of General Form. Journal of the Structural Division, 101(3), 523–538. Lizárraga, J. F., Pérez-Gavilán, J. J. (2017). Parameter estimation for nonlinear analysis of multi-perforated concrete masonry walls. Construction and Building Materials, 141, 353–365. https://doi.org/10.1016/j.conbuildmat.2017.03.008 Lourenço, P. (1996). Computational Strategy for Masonry Structures. Lourenço, P. B., Barros, J. O., Oliveira, J. T. (2004). Shear testing of stack bonded masonry. Construction and Building Materials, 18(2), 125–132. https://doi.org/10.1016/j.conbuildmat.2003.08.018 Lourenço, P. B., Ramos, L. F. (2004). Characterization of Cyclic Behavior of Dry Masonry Joints. Journal of Structural Engineering, 130(5), 779–786. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(779) Lourenço, P. B., Rots, J. G. (1997). Multisurface Interface Model for Analysis of Masonry Structures. Journal of Engineering Mechanics, 123(7), 660–668. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660) Magenes, G., Calvi, G. M. (1997). In-plane seismic response of brick masonry walls. Earthquake Engineering & Structural Dynamics, 26(11), 1091–1112. https://doi.org/10.1002/(SICI)1096-9845(199711)26:11<1091::AID-EQE693>3.0.CO;2-6 Mahrous, A., AbdelRahman, B., Galal, K. (2022). Seismic response analysis of reinforced masonry core walls with boundary elements. Engineering Structures, 270(September), 114882. https://doi.org/10.1016/j.engstruct.2022.114882 Maleki, M. (2008). Behaviour of Partially Grouted Reinforced Masonry Shear Walls Under Cyclic Reversed Loading. McMaster University. Medeiros, K. A. S., Chavez, K. H., Fonseca, F. S., Parsekian, G. A., Shrive, N. G. (2021). Parametric study of multi-story, perforated, partially grouted masonry walls subjected to in-plane cyclic actions. Canadian Journal of Civil Engineering, 48(8), 1046–1055. https://doi.org/10.1139/cjce-2020-0128 Meli, R. (1973). Behaviour of masonry walls under lateral loads. In The 5th World Congress on Earthquake Engineering (pp. 853–862). Milani, G. (2008). 3D Upper Bound Limit Analysis of Multi-Leaf Masonry Walls. International Journal of Mechanical Sciences, 50(4), 817–836. https://doi.org/10.1016/j.ijmecsci.2007.11.003 Milani, G. (2010). 3D FE Limit Analysis Model for Multi-Layer Masonry Structures Reinforced with FRP Strips. International Journal of Mechanical Sciences, 52(6), 784–803. https://doi.org/10.1016/j.ijmecsci.2010.01.004 Milani, G. (2011a). Simple Homogenization Model for the Non-Linear Analysis of In-Plane Loaded Masonry Walls. Computers and Structures, 89(17–18), 1586–1601. https://doi.org/10.1016/j.compstruc.2011.05.004 Milani, G. (2011b). Simple Lower Bound Limit Analysis Homogenization Model for In- And Out-Of-Plane Loaded Masonry Walls. Construction and Building Materials, 25(12), 4426–4443. https://doi.org/10.1016/j.conbuildmat.2011.01.012 Minaie, E. (2009). Behavior and Vulnerability of Reinforced Masonry Shear Walls. Ph.D Thesis, Drexel University. Minaie, E., Moon, F. L., Hamid, A. A. (2014). Nonlinear Finite Element Modeling of Reinforced Masonry Shear Walls for Bidirectional Loading Response. Finite Elements in Analysis and Design, 84, 44–53. https://doi.org/10.1016/j.finel.2014.02.001 Minaie, E., Mota, M., Moon, F. L., Hamid, A. A. (2010). In-Plane Behavior of Partially Grouted Reinforced Concrete Masonry Shear Walls. Journal of Structural Engineering, 136(9), 1089–1097. https://doi.org/10.1061/(asce)st.1943-541x.0000206 NAHB Research Center. (1998). Building Concrete Masonry Homes :Design and Construction Issues. Upper Marlboro, MD, USA. Nasiri, E., Liu, Y. (2017). Development of a detailed 3D FE model for analysis of the in-plane behaviour of masonry infilled concrete frames. Engineering Structures, 143, 603–616. https://doi.org/10.1016/j.engstruct.2017.04.049 Nayal, R., Rasheed, H. A. (2006). Tension Stiffening Model for Concrete Beams Reinforced with Steel and FRP Bars. Journal of Materials in Civil Engineering, 18(6), 831–841. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(831) Nolph, H. M. (2010). In-Plane Shear Performance of Partially Grouted Masonry Shear Walls. Master. Thesis, Department of Civil and Environmental Engineering, WASHINGTON STATE UNIVERSITY. Nolph, S. M., ElGawady, M. A. (2012). Static Cyclic Response of Partially Grouted Masonry Shear Walls. Journal of Structural Engineering, 138(7), 864–879. https://doi.org/10.1061/(asce)st.1943-541x.0000529 Paulay, T. (1997). Seismic Torsional Effects on Ductile Structural Wall Systems. Journal of Earthquake Engineering, 1(4), 721–745. https://doi.org/10.1080/13632469708962385 Paulay, T., Priestly, M. J. N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9780470172841 Priestley, M. J. N., Calvi, G. M., Kowalsky, M. J. (2007a). Displacement based seismic design of stuctures. IUSS Press, Pavia, Italy. Priestley, M. J. N., Elder, D. M. G. (1982). Cyclic Loading Tests of Slender Concrete Masonry Shear Walls. Bulletin of the New Zealand National Society for Earthquake Engineering, 15(1), 3–21. https://doi.org/10.5459/bnzsee.15.1.3-21 Priestley, M. J. N., G.M. Calvi, M.J.Kowalsky. (2007b). Direct Displacement-Based Seismic Design of Structures. In NZSEE Conference (Vol. 24, pp. 555–557). https://doi.org/10.1193/1.2932170 Priestley, N., Calvi, G., Kowalsky, M. (2007c). Displacement-Based Seismic Design of Structures. IUSS Press, Pavia, Italy. Redmond, L., Stavridis, A., DesRoches, R. (2014). Development of a Finite Element Model for Partially Grouted Masonry. NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, (September 2015). https://doi.org/10.4231/D3PN8XG1V Rizaee. (2015). Assessing Bond Beam Horizontal Reinforcement Efficacy with Different End Anchorage Conditions in Concrete Block Masonry Shear Walls. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. CALGARY, ALBERTA. https://doi.org/10.11575/PRISM/25017 Sandoval, C., Arnau, O. (2017). Experimental characterization and detailed micro-modeling of multi-perforated clay brick masonry structural response. Materials and Structures/Materiaux et Constructions, 50(1). https://doi.org/10.1617/s11527-016-0888-3 Sarhosis, V., Lemos, J. V. (2018). A Detailed Micro-Modelling Approach for the Structural Analysis of Masonry Assemblages. Computers and Structures, 206, 66–81. https://doi.org/10.1016/j.compstruc.2018.06.003 Scanlon, A., Murray, D. W. (1974). Time Dependent Deflections of Reinforced Concrete Slab Deflections. Journal of the Structural Division, 100(9), 1911– 1924. Schultz, A. E. (1994). NIST Research Program on the Seismic Resistance of Partially-Grouted Masonry Shear Walls. National Institute of Standards and Technology. Schultz, A. E., Johnson, C. A. (2019). Seismic Resistance Mechanisms in Partially Grouted Shear Walls with New Design Details. In 13th North American Masonry Conf. The Masonry Society. Salt Lake City, UT, USA. Shedid, M. T. (2009). Strategies To Enhance Seismic Performance of Reinforced Masonry Shear Walls. (Canada): McMaster University; 2009. Ph.D. thesis. Shedid, M. T., El-Dakhakhni, W. W., Drysdale, R. G. (2009). Behavior of fully grouted reinforced concrete masonry shear walls failing in flexure: Analysis. Engineering Structures, 31(9), 2032–2044. https://doi.org/10.1016/j.engstruct.2009.03.006 Shedid, M. T., El-Dakhakhni, W. W., Drysdale, R. G. (2010a). Alternative Strategies to Enhance the Seismic Performance of Reinforced Concrete-Block Shear Wall Systems. Journal of Structural Engineering, 136(6), 676–689. https://doi.org/10.1061/(asce)st.1943-541x.0000164 Shedid, M. T., El-Dakhakhni, W. W., Drysdale, R. G. (2010b). Characteristics of Rectangular, Flanged, and End-Confined Reinforced Concrete Masonry Shear Walls for Seismic Design. Journal of Structural Engineering, 136(12), 1471–1482. https://doi.org/10.1061/(asce)st.1943-541x.0000253 Shing, P. B., Lotfi, H. R., Barzegarmehrabi, A., Brunner, J. (1992). Finite Element Analysis of Shear Resistance of Masonry Wall Panels with and without Confining Frames. Earthquake Engineering, Tenth World Conference. Siyam, M. A., El-Dakhakhni, W. W., Shedid, M. T., Drysdale, R. G. (2016). Seismic Response Evaluation of Ductile Reinforced Concrete Block Structural Walls. I: Experimental Results and Force-Based Design Parameters. Journal of Performance of Constructed Facilities, 30(4), 1–14. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000794 Stavridis, A., Shing, P. B. (2010). Finite-element modeling of nonlinear behavior of masonry-infilled RC frames. Journal of Structural Engineering, 136(3), 285–296. https://doi.org/10.1061/(ASCE)ST.1943-541X.116 Tagel-Din, H., Meguro, K. (2000). APPLIED ELEMENT METHOD FOR DYNAMIC LARGE DEFORMATION ANALYSIS OF STRUCTURES. Doboku Gakkai Ronbunshu, 2000(661), 1–10. https://doi.org/10.2208/jscej.2000.661_1 Taylor-Firth, A., Taylor, I. F. (1990). A bond tensile strength test for use in assessing the compatibility of Brick/Mortar interfaces. Construction and Building Materials, 4(2), 58–63. https://doi.org/10.1016/0950-0618(90)90001-H Thurston, S. J., Hutchison, D. L. (1982). Reinforced Masonry Shear Walls: Cyclic Load Tests in Contraflexure. Bulletin of the New Zealand National Society for Earthquake Engineering, 15(1), 27–45. Tomazevic, M. (1999). Earthquake-Resistant Design of Masonry Buildings (Vol. 1). PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO. https://doi.org/10.1142/p055 Tomaževič, M. (1999). Earthquake-resistant design of masonry buildings. TA - TT -. London, Singapore SE - xii, 268 pages : illustrations ; 23 cm.: Imperial College Press ; Distributed by World Scientific London, Singapore. https://doi.org/LK - https://worldcat.org/title/40776879 Usman, M., Farooq, S. H., Umair, M., Hanif, A. (2020). Axial compressive behavior of confined steel fiber reinforced high strength concrete. Construction and Building Materials, 230, 117043. https://doi.org/10.1016/j.conbuildmat.2019.117043 Valdebenito, G., Alvarado, D., Sandoval, C., Aguilar, V. (2015). Terremoto De Iquique Mw=8,2 - 01 Abril 2014: Daños Observados Y Efectos De Sitio En Estructuras De Albañilería. In XI Congr. Chil. Sismol. e Ing. Sísmica 922 ACHISINA. 18-20 March, Santiago. Chile. Van Der Pluijm, R. (1997). Non-linear behaviour of masonry under tension. Heron, 42(1), 25–48. Van der Pluijm, R., Rutten, H. S., Ceelen, M. (2000). Shear behaviour of bed joints. In conference; 12th International Brick/Block Masonry Conference; 2000-06-25; 2000-06-28 (p. 12). Van derPluijm, R. (1999). Out-of-Plane Bending of Masonry Behaviour and Strength. (Phd Thesis) Technische Universiteit Eindhoven. https://doi.org/10.6100/IR528212 Vebo, A., Ghali, A. (1977). Moment-Curvature Relation of Reinforced Concrete Slabs. Journal of the Structural Division, 103(3), 515–531. Voon, K. C., Ingham, J. M. (2003). SHEAR STRENGTH OF CONCRETE MASONRY WALLS. Zhang, Z., Murcia-Delso, J., Sandoval, C., Araya-Letelier, G., Wang, F. (2021). In-plane shear strength and damage fragility functions for partially-grouted reinforced masonry walls with bond-beam reinforcement. Engineering Structures, 242. https://doi.org/10.1016/j.engstruct.2021.112569