Login | Register

Low potential manganese ions as efficient electron donors in native anoxygenic bacteria

Title:

Low potential manganese ions as efficient electron donors in native anoxygenic bacteria

Deshmukh, Sasmit S., Protheroe, Charles, Ivanescu, Matei-Alexandru, Lag, Sarah and Kálmán, László (2018) Low potential manganese ions as efficient electron donors in native anoxygenic bacteria. Biochimica et Biophysica Acta (BBA) - Bioenergetics . ISSN 00052728 (In Press)

[thumbnail of laszlo-bba-2018.pdf]
Preview
Text (application/pdf)
laszlo-bba-2018.pdf - Accepted Version
Available under License Spectrum Terms of Access.
1MB

Official URL: http://dx.doi.org/10.1016/j.bbabio.2018.01.002

Abstract

Systematic control over molecular driving forces is essential for understanding the natural electron transfer processes as well as for improving the efficiency of the artificial mimics of energy converting enzymes. Oxygen producing photosynthesis uniquely employs manganese ions as rapid electron donors. Introducing this attribute to anoxygenic photosynthesis may identify evolutionary intermediates and provide insights to the energetics of biological water oxidation. This work presents effective environmental methods that substantially and simultaneously tune the redox potentials of manganese ions and the cofactors of a photosynthetic enzyme from native anoxygenic bacteria without the necessity of genetic modification or synthesis. A spontaneous coordination with bis-tris propane lowered the redox potential of the manganese (II) to manganese (III) transition to an unusually low value (~400 mV) at pH 9.4 and allowed its binding to the bacterial reaction center. Binding to a novel buried binding site elevated the redox potential of the primary electron donor, a dimer of bacteriochlorophylls, by up to 92 mV also at pH 9.4 and facilitated the electron transfer that is able to compete with the wasteful charge recombination. These events impaired the function of the natural electron donor and made BTP-coordinated manganese a viable model for an evolutionary alternative.

Divisions:Concordia University > Faculty of Arts and Science > Physics
Item Type:Article
Refereed:Yes
Authors:Deshmukh, Sasmit S. and Protheroe, Charles and Ivanescu, Matei-Alexandru and Lag, Sarah and Kálmán, László
Journal or Publication:Biochimica et Biophysica Acta (BBA) - Bioenergetics
Date:31 January 2018
Funders:
  • Natural Sciences and Engineering Research Council of Canada
  • Canada Foundation for Innovation
Digital Object Identifier (DOI):10.1016/j.bbabio.2018.01.002
Keywords:photosynthesis; electron transfer; energy conversion; evolution; manganese
ID Code:983456
Deposited By: Danielle Dennie
Deposited On:31 Jan 2018 20:11
Last Modified:31 Jan 2019 01:00
Related URLs:

References:

D.J. Des Marais When did photosynthesis emerge on earth? Science, 289 (2000), pp. 1703–1705

M.D. Brasier, O.R. Green, A.P. Jephcoat, A.P. Kleppe, M.J. Van Cranendonk, J.F. Lindsay, A. Steele, N.V. Grassineau Questioning the evidence for Earth's oldest fossils Nature, 416 (2002), pp. 76–81

Rashby, S. E., Sessions, A. L., Summons, R.A. & Newman, D. K. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc. Natl. Acad. Sci. U.S.A.104,15099–15104 (2007).

R. Buick When did oxygenic photosynthesis evolve? Phyl. Trans. R. Soc. B, 363 (2008), pp. 2731–2743

Blankenship, R. E.& Hartman. H. The origin and evolution of oxygenic photosynthesis. Trends. Biol. Sci.23, 94–97 (1998).

Larkum, A. W. D. The evolution of chlorophylls and photosynthesis, in Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Grimm,B. , Porra, R. J., Rüdiger, W. & Scheer, H. Eds. pp. 261–282, (Springer, 2006).

J. Yano, V. Yachandra Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen Chem. Rev., 114 (2014), pp. 4175–4205

N. Hunter, F. Daldal Thurnauer M. & Beatty, J. T., Eds The Purple Phototrophic Bacteria (Springer-Verlag (2009)

J. Xiong, W.M. Fischet, K. Inoue, M. Nakahara, C.E. Bauer Molecular evidence for the early evolution of photosynthesis Science, 289 (2000), pp. 1724–1730

U. Ermler, G. Fritzsch Buchanan, S.K.& Michel, H. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions Structure, 2 (1994), pp. 925–936

Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å Nature, 473 (2011), pp. 55–60

L. Kálmán, R. LoBrutto, J.P. Allen, J.C. Williams Modified reaction centers oxidize tyrosines in reactions that mirror photosystem II Nature, 402 (1999), pp. 696–699

L. Kálmán, R. LoBrutto, J.P. Allen, J.C. Williams Manganese oxidation by modified reaction centers from Rhodobacter sphaeroides Biochemistry, 42 (2003), pp. 11016–11022

M. Thielges, G. Uyeda, A. Cámara-Artigas, L. Kálmán, J.C. Williams, J.P. Allen Design of a redox-linked active metal site: manganese bound to the bacterial reaction center at a site resembling that of photosystem II Biochemistry, 44 (2005), pp. 7389–7394

A. Khorobrykh, J. DasGupta, D.R.J. Kolling, V. Terentyev, V.V. Klimov, G.C. Dismukes Evolutionary origins of the photosynthetic water oxidation cluster: bicarbonate permits Mn2+ photooxidation by anoxygenic bacterial reaction centers Chem. Biochem., 14 (2013), pp. 1725–1731

S.S. Deshmukh, K. Tang, L. Kálmán Lipid binding to the carotenoid binding site in photosynthetic reaction centers J. Am. Chem. Soc., 133 (2011), pp. 16309–16316

K. Tang, J.C. Williams, J.P. Allen, L. Kálmán Effect of anions on binding and oxidation of divalent manganese and iron in modified bacterial reaction centers Biophys. J., 98 (2009), pp. 3295–3304

S.S. Deshmukh, J.C. Williams, J.P. Allen, L. Kálmán Light-induced conformational changes in photosynthetic reaction centers: redox regulated proton pathway near the dimer Biochemistry, 50 (2011), pp. 3321–3331

V. Balhara, S.S. Deshmukh, L. Kálmán, J.A. Kornblatt The interaction of streptococcal enolase with canine plasminogen: the role of surfaces in complex formation PLoS One, 9 (2014), Article e88395

J. Escorihuela, M.Á. González-Martínez, J.L. López-Paz, R. Puchades, Á. Maquieira, D. Gimenez-Romero Dual-polarization interferometry: a novel technique to light up the nanomolecular world Chem. Rev., 115 (2015), pp. 265–294

C.G. Dismukes, V.V. Klimov, S.V. Baranov, Y.N. Kozlov, J. DasGupta, A. Tyryshkin The origin of atmospheric oxygen on earth: the innovation of oxygenic photosynthesis Proc. Natl. Acad. Sci. U. S. A., 98 (2001), pp. 2170–2175

L. Kálmán, J.C. Wiliams, J.P. Allen Energetics for oxidation of a bound manganese cofactor in modified bacterial reaction centers Biochemistry, 50 (2011), pp. 3310–3320

A.-F. Miller Superoxide dismutases: ancient enzymes and new insights FEBS Lett., 586 (2012), pp. 585–595

D.W. Structural Christianson Chemistry and biology of manganese metalloenzymes Prog. Biophys. Mol. Biol., 67 (1997), pp. 217–252

Edwards, R. A., Baker, H. M., Whittaker, M. M., Whittaker, J. W., Jameson, J. B. & Baker, E. M. Crystal structure of Escherichia coli superoxide dismutase in 2.1 Å resolution. J. Biol. Inorg. Chem.3, 161–171 (1998).

A. Ferguson, A. Darwish, K. Graham, M. Schmidtmann, A. Parkin, M. Murrie Bis-tris propane as a new polydentate linker in the synthesis of iron (III) and manganese (II/III) complexes Inorg. Chem., 47 (2008), pp. 9742–9744

Hanson, L. K., Thompson, M. A., Zerner, M. C. & Fajer, J. in The Photosynthetic Bacterial Reaction Center I, Breton, J.& Vermeglio, A., Eds, pp 355–367 (Plenum Press, New York, 1989).

L. Kálmán, R. LoBrutto, A.J. Narvaez Williams. J. C. & Allen, J. P. Correlation of proton release and electrochromic shifts of the optical spectrum due to oxidation of tyrosine in reaction centers from Rhodobacter sphaeroides Biochemistry, 42 (2003), pp. 13280–13286

M.L. Paddock, G. Feher, M.Y. Okamura Proton and electron transfer to secondary quinone (QB) in bacterial reaction centers: the effect of changing the electrostatics in the vicinity of QB by interchanging asp and Glu at the L212 and L213 sites Biochemistry, 36 (1997), pp. 14238–14249

X. Lin, H.A. Murchison, V. Nagarajan, W.W. Parson, J.P. Allen, J.C. Williams Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides Proc. Nat. Acad. Sci. U.S.A., 91 (1994), pp. 10265–10269

A.T.R. Laurie, R.M. Jackson Q-SiteFinder: an energy based method for the prediction of protein-ligand binding sites Bioinformatics, 21 (2005), pp. 1908–1916

H.L. Axelrod, H.L. Abresch, M.Y. Okamura, A.P. Yeh, D.C. Rees, G. Feher X-ray structure determination of the cytochrome c(2): reaction center electron transfer complex from Rhodobacter sphaeroides J. Mol. Biol., 319 (2002), pp. 501–515

J.C. McComb, R.R. Stein, C.A. Wraight Investigations on the influence of headgroup substitution and isoprene side-chain length in the function of primary and secondary quinones of bacterial reaction centers Biochim. Biophys. Acta, 1015 (1990), pp. 155–161

J. Koepke, E.-M. Krammer, A.R. Klingen, P. Sebban, G.M. Ullmann, G. Fritzsch pH modulates the quinone position in the photosynthetic reaction center from Rhodobacter sphaeroides in the neutral and charge separated states J. Mol. Biol., 371 (2007), pp. 396–409

P. Maróti, C. Kirmaier, C.A. Wraight, D. Holten, R.M. Pearlstein Photochemistry and electron transfer in borohydrate-treated photosynthetic reaction centers Biochim. Biophys. Acta, 810 (1985), pp. 132–139

Venturoli, G., Drepper, F., Williams, J. C., Allen, J.P., Lin, X. & Mathis, P. Effects of temperature and ΔGo on electron transfer from cytochrome c(2) to the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides. Biophys. J. 74, 3226–3240 (1995).

S. Osváth, P. Maróti Coupling of cytochrome and quinone turnovers in the photocycle of reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides Biophys. J., 73 (1997), pp. 972–982

J.E. Johnson, S.M. Webb, K. Thomas, S. Ono, J.L. Kirschvink, W.W. Fischer Manganese-oxidizing photosynthesis before the rise of cyanobacteria Proc. Natl. Acad. Sci. U. S. A., 108 (2013), pp. 11238–11243

J.F. Allen, W. Evolutionary biology Martin Out of thin air Nature, 445 (2007), pp. 610–612

W.W. Fischer, A.H. Knoll An iron shuttle for deep water silica in late Archean and early Paleoproterozoic iron formation Geol. Soc. Am. Bull., 121 (2009), pp. 222–235

M.F. Hohmann-Marriott, R.E. Blankenship Evolution of photosynthesis Annu. Rev. Plant Biol., 52 (2011), pp. 515–546
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top