Login | Register

Boutiques: a flexible framework to integrate command-line applications in computing platforms


Boutiques: a flexible framework to integrate command-line applications in computing platforms

Glatard, Tristan, Kiar, Gregory, Aumentado-Armstrong, Tristan, Beck, Natacha, Bellec, Pierre, Bernard, Rémi, Bonnet, Axel, Brown, Shawn T, Camarasu-Pop, Sorina, Cervenansky, Frédéric, Das, Samir, Ferreira da Silva, Rafael, Flandin, Guillaume, Girard, Pascal, Gorgolewski, Krzysztof J, Guttmann, Charles R G, Hayot-Sasson, Valerie, Quirion, Pierre-Olivier, Rioux, Pierre, Rousseau, Marc-Étienne and Evans, Alan C (2018) Boutiques: a flexible framework to integrate command-line applications in computing platforms. GigaScience, 7 (5). ISSN 2047-217X

Text (application/pdf)
Glatard-GigaScience-2018.pdf - Published Version
Available under License Creative Commons Attribution.

Official URL: http://dx.doi.org/10.1093/gigascience/giy016


We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Computer Science and Software Engineering
Item Type:Article
Authors:Glatard, Tristan and Kiar, Gregory and Aumentado-Armstrong, Tristan and Beck, Natacha and Bellec, Pierre and Bernard, Rémi and Bonnet, Axel and Brown, Shawn T and Camarasu-Pop, Sorina and Cervenansky, Frédéric and Das, Samir and Ferreira da Silva, Rafael and Flandin, Guillaume and Girard, Pascal and Gorgolewski, Krzysztof J and Guttmann, Charles R G and Hayot-Sasson, Valerie and Quirion, Pierre-Olivier and Rioux, Pierre and Rousseau, Marc-Étienne and Evans, Alan C
Journal or Publication:GigaScience
  • Concordia Open Access Author Fund
  • Canada First Research Excellence Fund
Digital Object Identifier (DOI):10.1093/gigascience/giy016
Keywords:application integration; containers; neuroinformatics
ID Code:983996
Deposited On:03 Jul 2018 13:45
Last Modified:03 Jul 2018 13:45
Additional Information:Supplementary data available: https://academic.oup.com/gigascience/article/7/5/giy016/4951979#supplementary-data


1. Peng RD. Reproducible research in computational science. Science 2011; 334(6060):1226–7.

2. Stodden V, McNutt M, Bailey DH et al. Enhancing reproducibility for computational methods. Science 2016; 354(6317):1240–1.

3. Kurtzer GM, Sochat V, Bauer MW. Singularity: scientific containers for mobility of compute. PloS One 2017; 12(5):e0177459.

4. Glatard T, Étienne Rousseau M, Camarasu-Pop S et al. Software architectures to integrate workflow engines in science gateways. Future Generation Computer Systems 2017; 75(Supplement C):239–55.

5. Gorgolewski KJ, Alfaro-Almagro F, Auer T et al. BIDS apps: improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS computational biology 2017; 13(3):e1005209.

6. Gentleman RC, Carey VJ, Bates DM et al. Bioconductor: open software development for computational biology and bioinformatics. Genome biology 2004; 5(10):R80.

7. Sherif T, Rioux P, Rousseau ME et al. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research. Frontiers in Neuroinformatics 2014; 8(54).

8. Das S, Glatard T, MacIntyre LC et al. The MNI data-sharing and processing ecosystem. NeuroImage 2016; 124:1188–95.

9. Gorgolewski K, Burns CD, Madison C et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in neuroinformatics 2011;5.

10. Glatard T, Lartizien C, Gibaud B et al. A virtual imaging platform for multi-modality medical image simulation. IEEE Transactions on Medical Imaging 2013; 32(1):110–8.

11. Montagnat J, Isnard B, Glatard T et al. A data-driven workflow language for grids based on array programming principles. In: Workshop on Workflows in Support of Large-Scale Science (WORKS’09) ; 2009.

12. Glatard T, Montagnat J, Lingrand D et al. Flexible and efficient workflow deployment of data-intensive applications on grids with MOTEUR. Journal of High Performance Computing and Applications 2008; 22(3):347–60.

13. Jenkinson M, Beckmann CF, Behrens TE et al. Fsl. Neuroimage 2012; 62(2):782–90.

14. Bellec P, Carbonell F, Perlbarg V et al. A neuroimaging analysis kit for Matlab and Octave. In: Proceedings of the 17th International Conference on Functional Mapping of the Human Brain ; 2011. p. 2735–2746.

15. Bellec P, Lavoie-Courchesne S, Dickinson P et al. The Pipeline System for Octave and Matlab (PSOM): a lightweight scripting framework and execution engine for scientific workflows. Frontiers in neuroinformatics 2012; 6(7).

16. Glatard T, Quirion PO, Adalat R et al. Integration between PSOM and CBRAIN for distributed execution of neuroimaging pipelines. In: Meeting of the Organization for Human Brain Mapping Geneva , Switzerlad; 2016.

17. Tournier J, Calamante F, Connelly A et al. MRtrix: diffusion tractography in crossing fiber regions. International Journal of Imaging Systems and Technology 2012; 22(1):53–66.

18. Kiar G, Bridgeford E, Chandrashekhar V et al. A comprehensive cloud framework for accurate and reliable human connectome estimation and meganalysis. bioRxiv 2017;p. 188706.

19. Jochimsen TH, Von Mengershausen M. ODIN-object-oriented development interface for NMR. Journal of Magnetic Resonance 2004; 170(1):67–78.

20. Penny WD, Friston KJ, Ashburner JT et al. Statistical parametric mapping: the analysis of functional brain images . Academic press; 2007.

21. Hatt M, Laurent B, Ouahabi A et al. The first MICCAI challenge on PET tumor segmentation. Medical Image Analysis 2018;Under minor revision.

22. Ghosh S, Auer T, Flandin G et al. Capturing and reusing computation details with the Neuroimaging Data Model (NIDM). In: Annual Meeting of the Organisation of Human Brain Mapping (OHBM 2017) ; 2017.

23. Pieper S, Halle M, Kikinis R. 3D Slicer. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro IEEE ; 2004. p. 632–635.

24. Craddock RC, Bellec P, Margules DS et al. 2015 Brainhack Proceedings. GigaScience 2016; 5(1):1–26.

25. Larrabide I, Omedas P, Martelli Y et al. GIMIAS: an open source framework for efficient development of research tools and clinical prototypes. In: International Conference on Functional Imaging and Modeling of the Heart Springer; 2009. p. 417–426.

26. Heckel F, Schwier M, Peitgen HO. Object-oriented application development with MeVisLab and Python. In: GI Jahrestagung ; 2009. p. 1338–1351.

27. Nolden M, Zelzer S, Seitel A et al. The medical imaging interaction toolkit: challenges and advances. International journal of computer assisted radiology and surgery 2013; 8(4):607–620.

28. Delaitre T, Kiss T, Goyeneche A et al. GEMLCA: Running legacy code applications as grid services. Journal of Grid Computing 2005; 3(1-2):75–90.

29. Terstyanszky G, Kukla T, Kiss T et al. Enabling scientific workflow sharing through coarse-grained interoperability. Future Generation Computer Systems 2014; 37:46–59.

30. Glatard T, Kiar G, Aumentado-Armstrong T et al. , Boutiques: Release 0.5.5 ; 2018. https://doi.org/10.5281/zenodo.1164290.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top