Login | Register

How does hybridization affect multiple metrics of fitness in fragmented populations of brook trout under moderate climate warming?

Title:

How does hybridization affect multiple metrics of fitness in fragmented populations of brook trout under moderate climate warming?

Wells, Zachery (2016) How does hybridization affect multiple metrics of fitness in fragmented populations of brook trout under moderate climate warming? Masters thesis, Concordia University.

[thumbnail of Wells_MSc_F2016.pdf]
Preview
Text (application/pdf)
Wells_MSc_F2016.pdf - Accepted Version
Available under License Spectrum Terms of Access.
2MB

Abstract

As a population’s genetic makeup is often attributed to the combined fitness of its individuals, the adoption of deliberate hybridization practices is an area of interest for many hatchery and conservation programs. Using a common garden experimental design involving eight wild populations of Salvelinus fontinalis (brook trout), we studied how effective population size (Ne), divergence (QST, km), and environmental dissimilarity (pH, temperature) may influence hybridization outcomes for fitness related traits under moderate climate warming. Additionally, we looked at the ability of six of these populations to tolerate acute thermal warming, and whether or not this tolerance could be altered by hybridizing populations. Critical thermal maximum (CTmax) assays were conducted on juveniles from each population to assess thermal tolerance, and agitation temperature (a behavioural metric quantifying temperature at the onset of refugia-seeking behaviour) was recorded for assessing behavioural changes to elevated temperatures. Gametes were collected from different-sized, isolated populations of brook trout, and crossed in the lab. Fitness-related traits were compared between pure and F1 hybrid crosses via common garden experimental design. We had the unique opportunity to jointly investigate how these factors influence multiple metrics of hybrid fitness in wild, isolated, and varyingly-sized populations of a vertebrate species inhabiting a relatively undisturbed environment. Although population size and environmental dissimilarity were found to significantly affect hybrid fitness, these relationships were biologically weak. Although significant differences in CTmax were found between populations, this difference was at most 0.68 °C (29.11-29.79 °C), and no effect of hybridization was seen despite varying thermal regimes between these populations’ wild streams. These results will provide guidance to small population and captive-breeding conservation programs, as the lack of a strong relationship between hybridization and fitness encourages population-specific approach to genetic rescue projects. Additionally, this study highlights the level to which thermal tolerance is conserved between isolated populations of a vertebrate species, in the face of climate warming.

Divisions:Concordia University
Concordia University > Faculty of Arts and Science
Concordia University > Faculty of Arts and Science > Biology
Item Type:Thesis (Masters)
Authors:Wells, Zachery
Institution:Concordia University
Degree Name:M. Sc.
Program:Biology
Date:10 September 2016
Thesis Supervisor(s):Fraser, Dylan J.
Keywords:outbreeding, hybridization, brook trout, conservaiton, genetics, thermal tolerance, critical thermal maximum
ID Code:981732
Deposited By: ZACHERY WELLS
Deposited On:08 Nov 2016 19:15
Last Modified:18 Jan 2018 17:53

References:

LITERATURE CITED
Alley, R. B., Marotzke, J., Nordhaus, W. D., Overpeck, J. T., Peteet, D. M., Pielke, R. A., Pierrehumbert, R.T., Rhines, P.B., Stocker, T.F., Talley, L.D., & Wallace, J. M. (2003). Abrupt climate change. Science, 299(5615), 2005-2010.
Andersen, L. W., Fog, K., & Damgaard, C. (2004). Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proceedings of the Royal Society of London, Series B: Biological Sciences, 271(1545), 1293-1302.
Angers, B., Bernatchez, L., Angers, A., & Desgroseillers, L. (1995). Specific microsatellite loci for brook charr reveal strong population subdivision on a microgeographic scale. Journal of Fish Biology, 47(sA), 177-185.
Araki, H., Berejikian, B. A., Ford, M. J., & Blouin, M. S. (2008). Fitness of hatchery‐reared salmonids in the wild. Evolutionary Applications, 1(2), 342-355.
Araki, H., Cooper, B., & Blouin, M. S. (2007). Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science, 318(5847), 100-103.
Baker, J. P., Van Sickle, J., Gagen, C. J., DeWalle, D. R., Sharpe, W. E., Carline, R. F., Baldigo, B. P., Murdoch, P. S., Bath, D. W., Krester, W. A., Simonin, H. A. & Wigington, P. J. Jr. (1996). Episodic acidification of small streams in the northeastern United States: Effects on fish populations. Ecological Applications, 6(2), 422-437.
Basu, N., Todgham, A. E., Ackerman, P. A., Bibeau, M. R., Nakano, K., Schulte, P. M., & Iwama, G. K. (2002). Heat shock protein genes and their functional significance in fish. Gene, 295(2), 173-183. 91
Bates, D., Maechler, M., and Bolker, B. (2012). lme4: Linear mixed-effects models using S4 classes. R package version 2.14.1. (http://CRAN.R-project.org/package=lme4).
Beacham, T. D., & Murray, C. B. (1985). Effect of female size, egg size, and water temperature on developmental biology of chum salmon (Oncorhynchus keta) from the Nitinat River, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences, 42(11), 1755-1765.
Becker, C. D., & Genoway, R. G. (1979). Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environmental Biology of Fishes, 4(3), 245-256.
Benfey, T. J., McCabe, L. E., & Pepin, P. (1997). Critical thermal maxima of diploid and triploid brook charr, Salvelinus fontinalis. Environmental Biology of Fishes, 49(2), 259-264.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 289-300.
Bernatchez, L., & Wilson, C. C. (1998). Comparative phylogeography of Nearctic and Palearctic fishes. Molecular Ecology, 7(4), 431-452.
Bernos, T. A., & Fraser, D. J. (2016). Spatiotemporal relationship between adult census size and genetic population size across a wide population size gradient. Molecular Ecology.
Brander, K. M. (2007). Global fish production and climate change. Proceedings of the National Academy of Sciences, 104(50), 19709-19714. 92
Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. Journal of Experimental Biology 216: 2771-2782.
Clark, E. S., Stelkens, R. B., & Wedekind, C. (2013). Parental influences on pathogen resistance in brown trout embryos and effects of outcrossing within a river network. PloS one, 8(2), e57832.
Cowles, R. B., & Bogert, C. M. (1944). A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History, 83(5), 261-296.
Cox, D. K., Gibbons, J. W., & Sharitz, R. R. (1974). Effects of three heating rates on the critical thermal maximum of bluegill (No. CONF-730505--). Oak Ridge National Lab., TN; Savannah River Ecology Lab., Aiken, SC (USA).
Cross, T. F., & King, J. (1983). Genetic effects of hatchery rearing in Atlantic salmon. Aquaculture, 33(1), 33-40.
Danzmann, R. G., Morgan II, R. P., Jones, M. W., Bernatchez, L., & Ihssen, P. E. (1998). A major sextet of mitochondrial DNA phylogenetic assemblages extant in eastern North American brook trout (Salvelinus fontinalis): distribution and postglacial dispersal patterns. Canadian Journal of Zoology, 76(7), 1300-1318.
Davis, M. B., & Shaw, R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science, 292(5517), 673-679. 93
De Staso III, J., & Rahel, F. J. (1994). Influence of water temperature on interactions between juvenile Colorado River cutthroat trout and brook trout in a laboratory stream. Transactions of the American Fisheries Society, 123(3), 289-297.
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105(18), 6668-6672.
Edmands, S. (1999). Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution, 53(6), 1757-1768.
Edmands, S. (2002). Does parental divergence predict reproductive compatibility? Trends in Ecology & Evolution, 17(11), 520-527.
Edmands, S. (2007). Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Molecular Ecology, 16(3), 463-475.
Edmands, S., & Deimler, J. K. (2004). Local adaptation, intrinsic coadaptation and the effects of environmental stress on interpopulation hybrids in the copepod Tigriopus californicus. Journal of Experimental Marine Biology and Ecology, 303(2), 183-196.
Einum, S., & Fleming, I. A. (1999). Maternal effects of egg size in brown trout (Salmo trutta): norms of reaction to environmental quality. Proceedings of the Royal Society of London B: Biological Sciences, 266(1433), 2095-2100.
Einum, S., & Fleming, I. A. (2000). Selection against late emergence and small offspring in Atlantic salmon (Salmo salar). Evolution, 54(2), 628-639. 94
Eknath, A. E., & Doyle, R. W. (1990). Effective population size and rate of inbreeding in aquaculture of Indian major carps. Aquaculture, 85(1), 293-305.
Eliason, E. J., Clark, T. D., Hague, M. J., Hanson, L. M., Gallagher, Z. S., Jeffries, K. M., & Farrell, A. P. (2011). Differences in thermal tolerance among sockeye salmon populations. Science, 332(6025), 109-112.
Elliott, J. M., & Klemetsen, A. (2002). The upper critical thermal limits for alevins of Arctic charr from a Norwegian lake north of the Arctic circle. Journal of Fish Biology, 60(5), 1338-1341.
Ellstrand, N. C., & Elam, D. R. (1993). Population genetic consequences of small population size: implications for plant conservation. Annual review of Ecology and Systematics, 217-242.
Ezard, T. H. G., & Travis, J. M. J. (2006). The impact of habitat loss and fragmentation on genetic drift and fixation time. Oikos, 114(2), 367-375.
Farrell, A. P. (2009). Environment, antecedents and climate change: lessons from the study of temperature physiology and river migration of salmonids. Journal of Experimental Biology, 212(23), 3771-3780.
Fenster, C. B., & Galloway, L. F. (2000). Inbreeding and outbreeding depression in natural populations of Chamaecrista fasciculata (Fabaceae). Conservation Biology, 14(5), 1406-1412. 95

Fields, R., Lowe, S. S., Kaminski, C., Whitt, G. S., & Philipp, D. P. (1987). Critical and chronic thermal maxima of northern and Florida largemouth bass and their reciprocal F1 and F2 hybrids. Transactions of the American Fisheries Society, 116(6), 856-863.
Fox, C. W., & Reed, D. H. (2011). Inbreeding depression increases with environmental stress: an experimental study and meta‐analysis. Evolution, 65(1), 246-258.
Frankham, R. (1996). Relationship of genetic variation to population size in wildlife. Conservation Biology, 10(6), 1500-1508.
Frankham, R. (2015). Genetic rescue of small inbred populations: meta‐analysis reveals large and consistent benefits of gene flow. Molecular ecology. Pre-publish
Frankham, R., Brook, B. W., Bradshaw, C. J., Traill, L. W., & Spielman, D. (2013). 50/500 rule and minimum viable populations: response to Jamieson and Allendorf. Trends in Ecology and Evolution, 28(4-187).
Franklin, I. R. (1980). Evolutionary change in small populations. Conservation biology: an evolutionary-ecological perspective, 135-149.
Fraser, D. J., Cook, A. M., Eddington, J. D., Bentzen, P., & Hutchings, J. A. (2008). Mixed evidence for reduced local adaptation in wild salmon resulting from interbreeding with escaped farmed salmon: complexities in hybrid fitness. Evolutionary Applications, 1(3), 501-512.
Fraser, D. J., Debes, P. V., Bernatchez L., & Hutchings, J. A. (2014). Population size, habitat fragmentation, and the nature of adaptive variation in stream fish. Proceedings of the Royal Society Biological Sciences, 281, 1790 96
Fraser, D. J., Houde, A. L. S., Debes, P. V., O'Reilly, P., Eddington, J. D., & Hutchings, J. A. (2010). Consequences of farmed-wild hybridization across divergent wild populations and multiple traits in salmon. Ecological Applications, 20(4), 935-953.
Galbreath, P. F., Adams, N. D., & Martin, T. H. (2004). Influence of heating rate on measurement of time to thermal maximum in trout. Aquaculture, 241(1), 587-599.
Godefroid, S., Piazza, C., Rossi, G., Buord, S., Stevens, A. D., Aguraiuja, R., Cowell, C., Weekley, C. W., Vogg, G., Iriondo, J. M., Johnson, I., Dixon, B., Gordon, D., Magnanon, S., Valentin, B., Bjureke, K., Koopman, R., Vicens, M., Virevaire, M., & Vanderborght, T. (2011). How successful are plant species reintroductions? Biological Conservation, 144(2), 672-682.
Grindeland, J. M. (2008). Inbreeding depression and outbreeding depression in Digitalis purpurea: optimal outcrossing distance in a tetraploid. Journal of evolutionary biology, 21(3), 716-726.
Heath, D. D., Fox, C. W., & Heath, J. W. (1999). Maternal effects on offspring size: variation through early development of chinook salmon. Evolution, 1605-1611.
Heino, J., Virkkala, R., & Toivonen, H. (2009). Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews, 84(1), 39-54.
Heino, M., & Godø, O. R. (2002). Fisheries-induced selection pressures in the context of sustainable fisheries. Bulletin of Marine Science, 70(2), 639-656.
Hendry, A. P., & Stearns, S. C. (2004). Evolution illuminated. Oxford University Press. 97
Hijmans, R.J., (2015). geosphere: Spherical Trigonometry. Rpackage version 1.3-13. http://CRAN.R-project.org/package=geosphere
Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurgerov, M. B., Fastie, C. L., Giffith, B., Hollister, R.D., Hope, A., Huntington, H.P., & Jensen, A. M. (2005). Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change, 72(3), 251-298.
Hitchings, S. P., & Beebee, T. J. C. (1998). Loss of genetic diversity and fitness in common toad (Bufo bufo) populations isolated by inimical habitat. Journal of Evolutionary Biology, 11(3), 269-283.
Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470(7335), 479-485.
Houde, A. L. S., Fraser, D. J., & Hutchings, J. A. (2009). Fitness-related consequences of competitive interactions between farmed and wild Atlantic salmon at different proportional representations of wild–farmed hybrids. ICES Journal of Marine Science 67: 657-667..
Houde, A. L., Fraser, D. J., O’Reilly, P., & Hutchings, J. A. (2011). Relative risks of inbreeding and outbreeding depression in the wild in endangered salmon. Evolutionary Applications, 4(5), 634-647.
Houde, E. D. (1987). Fish early life dynamics and recruitment variability. In R. D. Hoyt (Ed.), American Fisheries Society Symposium Series. (Vol. 2).
Huey, R. B., & Kingsolver, J. G. (1989). Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution, 4(5), 131-135. 98
Hughes, L. (2000). Biological consequences of global warming: is the signal already apparent?. Trends in Ecology & Evolution, 15(2), 56-61.
Husband, B. C., & Schemske, D. W. (1997). The effect of inbreeding in diploid and tetraploid populations of Epilobium angustifolium (Onagraceae): implications for the genetic basis of inbreeding depression. Evolution, 737-746.
Hutchings, J. A. (1991). "Fitness consequences of variation in egg size and food abundance in brook trout Salvelinus fontinalis." Evolution: 1162-1168.
Hutchings, J. A. (1996). Adaptive phenotypic plasticity in brook trout, Salvelinus fontinalis, life histories. Ecoscience, 25-32.
Hutchings, J. A. (2011). Old wine in new bottles: reaction norms in salmonid fishes. Heredity, 106(3), 421-437.
Imre, I., McLaughlin, R. L., & Noakes, D. L. G. (2002). Phenotypic plasticity in brook charr: changes in caudal fin induced by water flow. Journal of Fish Biology, 61(5), 1171-1181.
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Jamieson, I. G., & Allendorf, F. W. (2012). How does the 50/500 rule apply to MVPs?. Trends in Ecology & Evolution, 27(10), 578-584. 99
Keller, I., & Largiader, C. R. (2003). Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proceedings of the Royal Society of London B: Biological Sciences, 270(1513), 417-423.
Kelly, N. I., Burness, G., McDermid, J. L., & Wilson, C. C. (2014). Ice age fish in a warming world: minimal variation in thermal acclimation capacity among lake trout (Salvelinus namaycush) populations. Conservation Physiology, 2(1), cou025.
Ketola, T., & Saarinen, K. (2015). Experimental evolution in fluctuating environments: tolerance measurements at constant temperatures incorrectly predict the ability to tolerate fluctuating temperatures. Journal of Evolutionary Biology, 28(4), 800-806.
Koskinen, M. T., Haugen, T. O., & Primmer, C. R. (2002). Contemporary fisherian life-history evolution in small salmonid populations. Nature, 419(6909), 826-830.
Krueger, C. C., & Waters, T. F. (1983). Annual production of macroinvertebrates in three streams of different water quality. Ecology, 840-850.
Kuparinen, A., Boit, A., Valdovinos, F. S., Lassaux, H., & Martinez, N. D. (2016a). Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Scientific reports, 6.
Kuparinen, A., Hutchings, J. A., & Waples, R. S. (2016b). Harvest‐induced evolution and effective population size. Evolutionary applications, 9(5), 658-672.
Labonne, J., Kaeuffer, R., Guéraud, F., Zhou, M., Manicki, A., & Hendry, A. P. (2016). From the bare minimum: genetics and selection in populations founded by only a few parents. Evolutionary Ecology Research, 17(1), 21-34. 100
Lammi, A., Siikamäki, P., & Mustajärvi, K. (1999). Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conservation Biology, 13(5), 1069-1078.
Lande, R. (1988). Genetics and demography in biological conservation. Science, 241(4872), 1455-1460.
Latta, W. C. (1968). Some factors affecting survival of young-of-the-year brook trout, Salvelinus fontinalis (Mitchill), in streams. Michigan Department of Conservation.
Lenth, R. (2015). lsmeans: Least-Squares Means. R package version 2.20-23. http://CRAN.R-project.org/package=lsmeans
Lutterschmidt, W. I., & Hutchison, V. H. (1997). The critical thermal maximum: history and critique. Canadian Journal of Zoology, 75(10), 1561-1574.
Lynch, M. (1991). The genetic interpretation of inbreeding depression and outbreeding depression. Evolution, 622-629.
Lynch, M., & Lande, R. (1998). The critical effective size for a genetically secure population. Animal Conservation, 1(01), 70-72.
MacCrimmon, H. R., & Campbell, J. S. (1969). World distribution of brook trout, Salvelinus fontinalis. Journal of the Fisheries Board of Canada, 26(7), 1699-1725.
Magoulick, D. D., & Wilzbach, M. A. (1998). Effect of temperature and macrohabitat on interspecific aggression, foraging success, and growth of brook trout and rainbow trout pairs in laboratory streams. Transactions of the American Fisheries Society, 127(5), 708-717. 101
Marten, P. S. (1992). Effect of temperature variation on the incubation and development of brook trout eggs. The Progressive Fish-Culturist, 54(1), 1-6.
Mattila, H. R., & Seeley, T. D. (2007). Genetic diversity in honey bee colonies enhances productivity and fitness. Science, 317(5836), 362-364.
McCauley, R. W. (1958). Thermal relations of geographic races of Salvelinus. Canadian Journal of Zoology, 36(5), 655-662.
McDermid, J. L., Fischer, F. A., Al-Shamlih, M., Sloan, W. N., Jones, N. E., & Wilson, C. C. (2012). Variation in acute thermal tolerance within and among hatchery strains of brook trout. Transactions of the American Fisheries Society, 141(5), 1230-1235.
McDonnell, L. H., & Chapman, L. J. (2015). At the edge of the thermal window: effects of elevated temperature on the resting metabolism, hypoxia tolerance and upper critical thermal limit of a widespread African cichlid. Conservation Physiology, 3(1), cov050.
Meffe, G. K., Weeks, S. C., Mulvey, M., & Kandl, K. L. (1995). Genetic differences in thermal tolerance of eastern mosqyitofish (Gambusia holbrooki; Poeciliidae) from ambient and thermal ponds. Canadian Journal of Fisheries and Aquatic Sciences, 52(12), 2704-2711.
Moen, T., Hoyheim, B., Munck, H., & Gomez‐Raya, L. (2004). A linkage map of Atlantic salmon (Salmo salar) reveals an uncommonly large difference in recombination rate between the sexes. Animal genetics, 35(2), 81-92.
Molina, A., Biemar, F., Müller, F., Iyengar, A., Prunet, P., Maclean, N., Martial, J. A., & Muller, M. (2000). Cloning and expression analysis of an inducible HSP70 gene from tilapia fish. FEBS letters, 474(1), 5-10. 102
Nason, J. D., Hamrick, J. L., & Fleming, T. H. (2002). Historical vicariance and postglacial colonization effects on the evolution of genetic structure in Lophocereus, a Sonoran Desert columnar cactus. Evolution, 56(11), 2214-2226.
Palstra, F. P., & Fraser, D. J. (2012). Effective/census population size ratio estimation: a compendium and appraisal. Ecology and evolution, 2(9), 2357-2365.
Pankhurst, N. W., & Munday, P. L. (2011). Effects of climate change on fish reproduction and early life history stages. Marine and Freshwater Research,62(9), 1015-1026.
Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37-42.
Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global Ecology and Biogeography, 12(5), 361-371.
Pickup, M., & Young, A. G. (2008). Population size, self-incompatibility and genetic rescue in diploid and tetraploid races of Rutidosis leptorrhynchoides (Asteraceae). Heredity, 100(3), 268-274.
Pickup, M., Field, D. L., Rowell, D. M., & Young, A. G. (2012). Source population characteristics affect heterosis following genetic rescue of fragmented plant populations. Proceedings of the Royal Society B: Biological Sciences, 280(1750), 20122058.
Prill, N., Bullock, J. M., Dam, N. M., & Leimu, R. (2014). Loss of heterosis and family‐dependent inbreeding depression in plant performance and resistance against multiple herbivores under drought stress. Journal of Ecology. 102(6), 1497-1505. 103
Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Y. Xia, V. Bex, & Midgley, P. M. (2014). Climate change 2013: The physical science basis (p. 1535). T. Stocker (Ed.). Cambridge, UK, and New York: Cambridge University Press.
R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Recsetar, M. S., Zeigler, M. P., Ward, D. L., Bonar, S. A., & Caldwell, C. A. (2012). Relationship between fish size and upper thermal tolerance. Transactions of the American Fisheries Society, 141(6), 1433-1438.
Reed, D. H. (2005). Relationship between population size and fitness. Conservation biology, 19(2), 563-568.
Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology. 17(1), 230-237.
Reed, D. H., Briscoe, D. A., & Frankham, R. (2002). Inbreeding and extinction: the effect of environmental stress and lineage. Conservation Genetics, 3(3), 301-307.
Reed, D. H., O'Grady, J. J., Brook, B. W., Ballou, J. D., & Frankham, R. (2003). Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biological Conservation, 113(1), 23-34.
Rhymer, J. M., & Simberloff, D. (1996). Extinction by hybridization and introgression. Annual Review of Ecology and Systematics, 27(1), 83-109. 104
Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Möllmann, C., & Pinnegar, J. K. (2009). Resolving the effect of climate change on fish populations. ICES Journal of Marine Science: Journal du Conseil, fsp056.
Rouse, W. R., Douglas, M. S., Hecky, R. E., Hershey, A. E., Kling, G. W., Lesack, L., Marsh, P., McDonald, M., Nicholson, B.J., Roulet, N.T. & Smol, J. P. (1997). Effects of climate change on the freshwaters of arctic and subarctic North America. Hydrological Processes, 11(8), 873-902.
Sakamoto, T., Danzmann, R. G., Gharbi, K., Howard, P., Ozaki, A., Khoo, S. K., Woram, R. A., Okamoto, N., Ferguson, M. M., Holm, L. E., Guyomard, R., & H. Bjorn. (2000). A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics, 155(3), 1331-1345.
Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., LeRoy Poff, N., Sykes, M.T., Walker, B.H., Walker, M., Wall, D.H., & Leemans, R. (2000). Global biodiversity scenarios for the year 2100.science, 287(5459), 1770-1774.
Scott, W. B., and E. J. Crossman. "Freshwater fishes of Canada." Fisheries Research Board of Canada Bulletin 184 (1973).
Soulé, M. (1976). Allozyme variation: its determinants in space and time. Molecular evolution, 60-77. 105
Stabell, O. B. (1984). Homing and olfaction in salmonids: a critical review with special reference to the Atlantic salmon. Biological Reviews, 59(3), 333-388.
Stelkens, R. B., Pompini, M., & Wedekind, C. (2014). Testing the effects of genetic crossing distance on embryo survival within a metapopulation of brown trout (Salmo trutta). Conservation Genetics, 15(2), 375-386.
Stelkens, R., & Seehausen, O. (2008). Genetic distance between species predicts novel trait expression in their hybrids. Evolution, 63(4), 884-897.
Stitt, B. C., Burness, G., Burgomaster, K. A., Currie, S., McDermid, J. L., & Wilson, C. C. (2014). Intraspecific Variation in Thermal Tolerance and Acclimation Capacity in Brook Trout (Salvelinus fontinalis): Physiological Implications for Climate Change*. Physiological and Biochemical Zoology, 87(1), 15-29.
Stockwell, C. A., Hendry, A. P., & Kinnison, M. T. (2003). Contemporary evolution meets conservation biology. Trends in Ecology & Evolution, 18(2), 94-101.
Tallmon, D. A., Luikart, G., & Waples, R. S. (2004). The alluring simplicity and complex reality of genetic rescue. Trends in Ecology & Evolution, 19(9), 489-496.
Thorgaard, G. H., Allendorf, F. W., & Knudsen, K. L. (1983). Gene-centromere mapping in rainbow trout: high interference over long map distances. Genetics, 103(4), 771-783.
Tonn, W. M. (1990). Climate change and fish communities: a conceptual framework. Transactions of the American Fisheries Society, 119(2), 337-352.
Traill, L. W., Bradshaw, C. J., & Brook, B. W. (2007). Minimum viable population size: a meta-analysis of 30 years of published estimates. Biological conservation, 139(1), 159-166. 106
Travis, J. M. J. (2003). Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society of London B: Biological Sciences, 270(1514), 467-473.
Vrijenhoek, R. C. (1994). Genetic diversity and fitness in small populations. Conservation genetics (pp. 37-53). Birkhäuser Basel.
Waller, D. M. (2015). Genetic rescue: a safe or risky bet?. Molecular ecology, 24(11), 2595-2597.
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Frometin, J-M., Hoegh-Fuldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389-395.
Waples, R. S., Luikart, G., Faulkner, J. R., & Tallmon, D. A. (2013). Simple life-history traits explain key effective population size ratios across diverse taxa. Proceedings of the Royal Society B: Biological Sciences, 280(1768), 20131339.
Waser, N. M., Price, M. V., & Shaw, R. G. (2000). Outbreeding depression varies among cohorts of Ipomopsis aggregata planted in nature. Evolution,54(2), 485-491.
Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C., & Tallmon, D. A. (2015). Genetic rescue to the rescue. Trends in ecology & evolution, 30(1), 42-49.
Willett, C. S. (2012). Hybrid breakdown weakens under thermal stress in population crosses of the copepod Tigriopus californicus. Journal of Heredity, 103(1), 103-114.
Willi, Y., Van Buskirk, J., & Hoffmann, A. A. (2006). Limits to the adaptive potential of small populations. Annual Review of Ecology, Evolution, and Systematics, 433-458. 107

Wood, J. L., & Fraser, D. J. (2015). Similar plastic responses to elevated temperature among differentially abundant brook trout populations. Ecology, 96(4), 1010-1019.
Wood, J. L., Belmar-Lucero, S., Hutchings, J. A., & Fraser, D. J. (2014). Relationship of habitat variability to population size in a stream fish. Ecological Applications, 24:1085–1100.
Wood, J. L., Tezel, D., Joyal, D., & Fraser, D.J. (2015). Population size is weakly related to quantitative genetic variation and trait differentiation in stream fish. Evolution, 69:2303-2318.
Wood, J. L., Yates, M. C., & Fraser, D. J. (2016). Are heritability and selection related to population size in nature? Meta‐analysis and conservation implications. Evolutionary Applications, 9(5), 640-657.
Woram, R. A., McGowan, C., Stout, J. A., Gharbi, K., Ferguson, M. M., Hoyheim, B., Davidson, E. A., Davidson, W. S., Rexroad, C., & Danzmann, R. G. (2004). A genetic linkage map for Arctic char (Salvelinus alpinus): evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents. Genome,47(2), 304-315.
Xenopoulos, M. A., Lodge, D. M., Alcamo, J., Märker, M., Schulze, K., & Van Vuuren, D. P. (2005). Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biology, 11(10), 1557-1564.
Xu, C. L., Letcher, B. H., & Nislow, K. H. (2010). Size‐dependent survival of brook trout Salvelinus fontinalis in summer: effects of water temperature and stream flow. Journal of Fish Biology, 76(10), 2342-2369. 108
Yates, M. C., & Fraser, D. J. (2014). Does source population size affect performance in new environments?. Evolutionary Applications, 7(8), 871-882.
Young, A., Boyle, T., & Brown, T. (1996). The population genetic consequences of habitat fragmentation for plants. Trends in Ecology & Evolution, 11(10), 413-418.
Zhang, Y., & Kieffer, J. D. (2014). Critical thermal maximum (CTmax) and hematology of shortnose sturgeons (Acipenser brevirostrum) acclimated to three temperatures. Canadian Journal of Zoology, 92(3), 215-221.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top