Login | Register

Electrowetting-based Actuation of Model Biological Fluids

Title:

Electrowetting-based Actuation of Model Biological Fluids

Samadi, Niyusha (2016) Electrowetting-based Actuation of Model Biological Fluids. PhD thesis, Concordia University.

[thumbnail of Samadi_PhD_F2016.pdf]
Preview
Text (application/pdf)
Samadi_PhD_F2016.pdf - Accepted Version
Available under License Spectrum Terms of Access.
23MB

Abstract

Electrowetting-based Actuation of Model Biological Fluids
Niyusha Samadi, Ph.D.
Concordia University, 2016
In the past two decades, microfluidics-based lab-on-a-chip devices have received growing interest, and researchers have been developing chemical and biological analysis systems on very small scales. In Lab-on-a-chip systems, the goal is reducing chemical laboratory procedures and using miniaturized rapid, portable, inexpensive and reliable equipment which can be applied in medical diagnostics, and basic scientific research. The driving force behind the Lab-on-a-chip concept is “microfluidics” where contrary to bulk flows; surface tension is a dominant force for liquid handling and actuation. One method of actuation involves applying an external electric field which changes the surface tension between the solid-liquid interface reducing the meniscus contact angle and inducing motion of a droplet in a microchannel. This phenomenon is called “electrowetting”.
In this research, the effect of electrowetting on the behavior of biopolymer solutions such as DNA is experimentally investigated. To better assess the electrowetting phenomenon of such complex solutions, the physics of electrowetting of aqueous biopolymer solutions should be completely understood. Such a fundamental understanding currently does not exist. For this purpose, the effect of fluid composition (i.e. different concentrations of DNA solutions and the type of buffer solution) on the static response of the droplet to electric field variables such as applied voltage is identified.
In the transient response, the time and voltage dependency of the parameters such as droplet speed, total displacement, and elongation of the droplets of distilled water, Tris-HCl buffer and the DNA solutions is studied. Among these parameters, the droplet speed is a key factor which controls the rate of microfluidics-based lab-on-a-chip devices. It is found that the negatively charged oxygen ions on the DNA chain will affect the dynamic behaviour of DNA solutions significantly, and the electrophoretic velocity increases with voltage. Besides, it appears that the higher the DNA concentration is, the higher the DNA droplet velocity will be; as the ionic strength and the total effective charge increase with DNA concentration. Therefore, both electrowetting and electrophoretic forces contribute to the movement of the negatively charged droplets of DNA solutions.
Overall, the results of this study will help us to better understand, analyze, design and prototype the microfluidic-based systems for DNA solutions.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical and Industrial Engineering
Item Type:Thesis (PhD)
Authors:Samadi, Niyusha
Institution:Concordia University
Degree Name:Ph. D.
Program:Mechanical Engineering
Date:14 September 2016
Thesis Supervisor(s):Wood-Adams, Paula and Dolatabadi, Ali
Keywords:Electrowetting, Droplet Actuation, DNA, Droplet Transport, Droplet Velocity, Drople Total Displacement, Electrophoresis, Contact Angle Saturation, Droplet Elongation
ID Code:981794
Deposited By: NIYUSHA SAMADI
Deposited On:09 Nov 2016 19:52
Last Modified:01 Oct 2018 00:00

References:

1 D. Janasek, J. Franzke, A. Manz, “Scaling and the Design of Miniaturized Chemical-analysis systems”, Nature, vol. 442 (7101), pp.374-380, 2006.
2 G. Karniadakis, A. Beskok, N. Aluru, “Microflows and Nanoflows: Fundamentals and Simulation”, Springer, New York, 2005.
3 N. Kockmann, “Transport Phenomena in Micro Process Engineering”, Springer, Berlin, 2008.
4 F. Mugele, J.-Ch. Baret, “Electrowetting: From Basics to Applications”, J. Phys: Condens. Matter, vol. 17 (28), pp. R705-R774, 2005.
5 H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules”, Nature, vol. 442 (7101), pp. 387–393, 2006.
6 H. Song, D. L. Chen, R. F. Ismagilov, “Reactions in droplets in microfluidic channels”, Angew Chem Int Ed, vol. 45, pp. 7336–7356, 2006.
7 S. Haeberle, R. Zengerle, “Microfluidic platforms for lab-on-a-chip applications”, Lab Chip, vol. 7 (9), pp. 1094–1110, 2007.
8 R. B. Barber, D. R. Emerson, “Recent Advances in Electrowetting Microdroplet Technologies”, Chapter 4 of Book: “Microdroplet Technology, Principles and Emerging Applications in Biology and Chemistry”, Springer, New York, pp. 77- 116, 2012.
9 H. Y. Huang, T. L. Wu, H. R. Huang, C. J. Li, H. T. Fu, Y. K. Soong, M. Y. Lee, D. J. Yao, “Isolation of motile spermatozoa with a microfluidic chip having a surface-modified microchannel”, J. Lab. Autom, vol. 19 (1), pp. 91-99, 2014.
186
10 X. Jiang, W. Jing, L. Zheng, S. Liu, W. Wu, G. Sui, “A continuous-flow high-throughput microfluidic device for airborne bacteria PCR detection”, Lab on a Chip, vol. 14 (4), pp. 671–676, 2014.
11 D. P. Kise, D. Magana, M. J. Reddish, R. B. Dyer, “Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection”, Lab on a Chip, vol. 14 (3), pp. 584-591, 2014.
12 P. Woias, “Micropumps - past, progress and future prospects”, Sensors Actuators B:Chem, vol. 105(1), pp. 28-38, 2005.
13 H-C. Chang, L. Y. Yeo, “Electrokinetically Driven Microfluidics and Nanofluidics”, Cambridge University Press, 2010.
14 H-H Shen, S.-K. Fan, C.-J. Kim, “EWOD microfluidic systems for biomedical application”, Microfluid Nanofluid, vol. 16 (5), pp. 965-987, 2014.
15 Y. Wang, W-Y. Lin, K. Liu, R. J. Lin, M. Selke, H. C. Kolb, N. Zhang, X.-Z. Zhao, M. E. Phelps, C. K. F. Shen, K. F. Faull, and H- R. Tseng, "An integrated microfluidic device for large-scale in situ click chemistry screening", Lab on a Chip, vol. 9 (16), pp. 2281-2285, 2009.
16 R. B. Fair, A. Khlystov, V. Srinivasan, V.K. Pamula, K.N. Weaver, “Integrated chemical/ biochemical sample collection, pre-concentration and analysis on a digital microfluidic lab-on-a-chip platform”, Lab-on-a-chip: Platforms, Devices, And Applications, Proc. SPIE, vol. 5591, pp. 113-124, 2004.
17 R. B. Fair, “Digital Microfluidics: Is a true Lab-on-a-chip possible?”, Microfluid Nanofluid, vol. 3 (3), pp. 245-281, 2007.
18 R. B. Fair, A. Khlystov, T.D. Tailor, V. Ivanov, R.D. Evans, V. Srinivasan, V. K. Pamula, M. G. Pollack, P. B. Griffin, J. Zhou, “Chemical and Biological Applications of Digital-Microfluidic Devices”, IEEE Design Test Comput, vol. 24 (1), pp. 10–24, 2007.
187
19 S-Y. Teh, R. Lin, L.-H. Hung, A. P. Lee, “Droplet microfluidics”, Lab Chip, vol. 8 (2), pp. 198–220, 2008.
20 Y. Fouillet, D. Jary, C. Chabrol, P. Claustre, C. Peponnet, “Digital Microfluidic Design and Optimization of Classic and New Fluidic Functions for Lab on a Chip Systems”, Microfluid Nanofluid, vol. 4 (3), pp. 159–165, 2008.
21 M. Abdelgawad, A. R. Wheeler, “The Digital Revolution: A New Paradigm for Microfluidics”, Adv. Mater, vol. 21 (8), pp. 920–925, 2009.
22 P-G. de Gennes, F. Brochard-Wyart, D. Quéré, “Capillarity and wetting phenomena: drops, bubbles, pearls, waves”, Springer, New York, 2004.
23 M. G. Pollack, R. B. Fair, A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications”, Appl. Phys. Lett., vol. 77 (11), pp. 1725–1726, 2000.
24 C. Quilliet, B. Berge, “Electrowetting: a recent outbreak”, Curr. Opin. Colloid Interface Sci., vol. 6 (1), pp. 34-39, 2001.
25 M. G. Pollack, A.D. Shenderov, R.B. Fair, “ Electrowetting-based actuation of droplets for integrated microfluidics”, Lab Chip, vol. 2, pp. 96-101, 2002.
26 F. Mugele, A. Klingner, J. Buehrle, D. Steinhauser, S. Herminghaus, “Electrowetting: a convenient way to switchable wettability patterns”, J. Phys. Condens. Matter, vol. 17 (9), pp. S559–S576.
27 R. Shamai, D. Andelman, B. Berge, R. Hayes, “Water, electricity, and between. . . On electrowetting and its applications”, Soft Matter, vol. 4 (1), pp. 38–45, 2008.
28 J. A. Schwartz, J. V. Vykoukal, P. R. C. Gascoyne, “Droplet-based chemistry on a programmable micro-chip”, Lab Chip, vol. 4 (1), pp. 11–17, 2004.
188
29 S.-K. Fan, T.-H. Hsieh, D.-Y. Lin, “General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting”, Lab Chip, vol. 9 (9), pp. 1236–1242, 2009.
30 K.-L. Wang, T. B. Jones, A. Raisanen, “DEP actuated nanoliter droplet dispensing using feedback control”, Lab Chip, vol. 9 (7), pp. 901–909, 2009.
31 A. A. Darhuber, J. P. Valentino, S. M. Troian, S. Wagner, “Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays”, J. Microelectromech Syst., vol. 12 (6), pp. 873–879, 2003.
32 A. A. Darhuber, J. Z. Chen, J. M. Davis, S. M. Troian, “A study of mixing in thermocapillary flows on micropatterned surfaces”, Philos. Trans. R. Soc. Lond. A, vol. 362 (1818), pp. 1037– 1058, 2004.
33 A. A. Darhuber, J. P. Valentino, S. M. Troian, “Planar digital nanoliter dispensing system based on thermocapillary actuation”, Lab Chip, vol. 10 (8), pp. 1061–1071, 2010.
34 P. Y. Chiou, H. Moon, H. Toshiyoshi, C.-J. Kim, M. C. Wu, “Light actuation of liquid by optoelectrowetting”, Sens. Actuators A : Physical; Selected papers based on contributions revised from the Technical Digest of the 2002 Solid-State Sensors, Actuators and Microsystems workshop, vol. 104 (3), pp. 222–228, 2003.
35 H-S. Chuang, A. Kumar, S. T. Wereley, “Open optoelectrowetting droplet actuation”, Appl. Phys. Lett,, vol. 93 (6), pp. (064104-1)-(064104-3), 2008.
36 P. Y. Chiou, S.-Y. Park, M. C. Wu, “Continuous optoelectrowetting for picoliter droplet manipulation”, Appl. Phys. Lett., vol. 93 (22), pp. (221109-1)-(221109-3), 2008.
37 F. Krogmann, H. Qu, W. Mönch, H. Zappe, “Push/pull actuation using optoelectrowetting”, Sens. Actuators A: Physical, vol. 141 (2), pp. 499–505, 2008.
189
38 P.-Y. Chiou, Z. Chang, M. C. Wu, “Droplet manipulation with light on optoelectrowetting device”, J. Microelectromech. Syst., vol. 17 (1), pp. 133–138, 2008.
39 Z. Guttenberg, H. M üller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, A. Wixforth, “Planar chip device for PCR and hybridization with surface acoustic wave pump”, Lab Chip, vol. 5 (3), pp. 308–317, 2005.
40 D. Beyssen, L. Le Brizoual, O. Elmazria, P. Alnot, “Microfluidic device based on surface acoustic wave”, Sens. Actuators B: Chemical, vol. 118 (1), pp. 380–385, 2006.
41 J. K. Luo, Y. Q. Fu, Y. Li, X. Y. Du, A. J. Flewitt, A. J. Walton, W. I. Milne, “Moving-part-free microfluidic systems for lab-on-a-chip”, J. Micromech. Microeng., vol. 19 (5), pp. 054001-14, 2009.
42 Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review”, Sens. Actuators B: Chemical, vol. 143 (2), pp. 606–619, 2010.
43 W. C. Nelson, C.-J. Kim, “Droplet Actuation by Electrowetting-on-Dielectric (EWOD): A Review”, J Adhes. Sci. Technol., vol. 26 (12-17), pp. 1747-1771, 2012.
44 S. K. Cho, C.-J. Kim, “Particle separation and concentration control for digital microfluidic systems”, 16th. IEEE annual international conference on MEMS, Kyoto, Japan, pp. 686–689, 2003.
45 Y. Zhao, U-C. Yi, S. K. Cho, “Microparticle concentration and separation by traveling-wave dielectrophoresis (twDEP) for digital microfluidics”, J. Microelectromech. Syst., vol. 16 (6), pp. 1472–1481, 2007.
46 S. K. Cho, Y. Zhao, C.-J. Kim, “Concentration and binary separation of microparticles for droplet-based digital microfluidics”, Lab Chip, vol. 7 (4), pp. 490–498, 2007.
190
47 S-K. Fan, P-W. Huang, T-T. Wang, Y-H. Peng, “Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting”, Lab Chip, vol. 8 (8), pp. 1325–1331, 2008.
48 Y. Wang, Y. Zhao Y, S. K. Cho, “Efficient in-droplet separation of magnetic particles for digital microfluidics”, J. Micromech. Microeng., vol. 17 (10 ), pp. 2148–2156, 2007.
49 R. S. Sista, A. E. Eckhardt, V. Srinivasan, M. G. Pollack, S. Palanki, V. K. Pamula, “Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform”, Lab Chip, vol. 8 (12), pp. 2188–2196, 2008.
50 G. J. Shah, C.-J. Kim, “Meniscus-assisted high-efficiency magnetic collection and separation for EWOD droplet microfluidics”, J. Microelectromech. Syst., vol. 18 (2), pp. 363–375, 2009.
51 B. H.W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems”, Opt. Rev., vol. 12 (3), pp. 255–259, 2005.
52 S. Kuiper, B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett., vol. 85 (7), pp. 1128–1130, 2004.
53 B. Berge, J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting”, Eur. Phys. J. E, vol. 3 (2), pp. 159-163, 2000.
54 S. Yang, P. Mach, T. Krupenkin, J. A. Rogers, “Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels”, Appl. Phys. Lett., vol. 81 (2), pp. 202-204, 2002.
55 N. R. Smith, D. C. Abeysinghe, J. W. Haus, J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms”, Opt. Express, vol. 14 (14), pp. 6557–6563, 2006.
56 Z. Wan, H. Zeng, A. Feinerman, “Area-tunable micromirror based on electrowetting actuation of liquid-metal droplets”, Appl. Phys. Lett., vol. 89 (20), pp. 201107, 2006.
191
57 R. A. Hayes, B. J. Feenstra, “Video-speed electronic paper based on electrowetting”, Nature, vol. 425 (6956), pp. 383–385, 2003.
58 K. Zhou, J. Heikenfeld, “Arrayed electrowetting microwells”, Appl. Phys. Lett., vol. 92 (11), pp. 113515, 2008.
59 J. Heikenfeld, P. Drzaic, J-S. Yeo, T. Koch, “Review paper: A critical review of the present and future prospects for electronic paper”, J. Soc. Inf. Display, vol. 19 (2), pp. 129-156, 2011.
60 M. G. Pollack, A.D. Shenderov and R.B. Fair, “ Electrowetting-based actuation of droplets for integrated microfluidics”, Lab Chip, vol. 2, pp. 96-101, 2002.
61 J. Lienemann, A. Greiner, and J. G. Korvink, "Electrode Shapes for Electrowetting Arrays," IEEE Transactions on Comuter-Aided Design of Intergraded Circuits and Systems, vol. 25 (2), 2006.
62 N. Nashida, W. Satoh, J. Fukuda, H. Suzuki, “Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions”, Biosens. Bioelectron., vol. 22 (12), pp.3167–3173, 2007.
63 R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, V. Pamula, “Development of a digital microfluidic platform for point of care testing”, Lab Chip, vol. 8 (12), pp. 2091–2104, 2008.
64 L. Malic, D. Brassard, T. Veres, M. Tabrizian, “Integration and detection of biochemical assays in digital microfluidic LOC devices”, Lab Chip, vol. 10(4), pp. 418–431, 2010.
65 M. K. Chaudhury, G. M. Whitesides, “How to make water run uphill”, Science, vol. 256 (5063), pp.1539-1541, 1992.
66 M. Pollack, “Electrowetting-based microactuation of droplets for digital microfluidics” Ph.D. thesis, Duke University, 2001.
192
67 J. Berthier, “Microdrops and digital microfluidics: Processing, development and applications”, William Andrew, Norwich, NY, 2008.
68 T. Young, “Miscellaneous works”, J. Murray, London, vol. 1, (G. Peacock, ed.), 1855.
69 D. Li, A. W. Neumann, “The thermodynamic status of contact angles” Chapter 3 in Applied Surface Thermodynamics, A.W. Neumann, ed., Marcel-Dekker, vol. 63, pp. 109-168, Anonymous 1996.
70 R. J. Good, “A thermodynamic derivation of Wenzel's modification of Young's equation for contact angles; together with a theory of hysteresis”. J. Am. Chem. Soc., vol. 74(20), pp. 5041-5042, 1952.
71 J. Z. Chen, S. M. Troian, A. A. Darhuber, S. Wagner, “Effect of contact angle hysteresis on thermocapillary droplet actuation”, J. Appl. Phys., vol. 97 (1), pp. 014906 (1-9), 2005.
72 J. Berthier, P. Dubois, P. Clementz, P. Claustre, C. Peponnet, Y. Fouillet, “Actuation potentials and capillary forces in electrowetting based microsystems”, Sens. Actuators A, vol. 134 (2), pp. 471–479, 2007.
73 J. J. Jasper, E. V. Kring. “The isobaric surface tensions and thermodynamic properties of the surfaces of a series of n-Alkanes, C5 to C18, 1-Alkenes, C6 to C16, and of n-Decylcyclopentane, n-Decylcyclohexane and n - Dcylbenzene”, J. Phys. Chem., vol. 59(10), pp. 1019-1021, 1955.
74 Z. Keshavarz-Motamed, L. Kadem, A. Dolatabadi, “Effects of dynamic contact angle on numerical modeling of electrowetting in parallel plate microchannels”, Microfluid. Nanofluid., vol. 8 (1), pp.47–56, 2010.
75 G. M. Whitesides, P.E.Laibinis, “Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface”, Langmuir, vol. 6 (1), pp. 87-96, 1990.
193
76 K. Ichimura, S.-K. Oh, M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface”, Science, vol. 288 (5471), pp. 1624-1626, 2000.
77 B., Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong,, V. S. Craig,, R. R. Shah, N. L. Abbott, “Electrochemical principles for active control of liquids on submillimeter scales”, Science, vol. 283 (5398), pp. 57-60, 1999.
78 T. S. Sammarco, M. A. Burns, “Thermocapillary pumping of discrete drops in microfabricated analysis devices ”, AIChE .J., vol. 45 (2), pp. 350-366, 1999.
79 J. Zeng, T. Korsmeyer, “Principles of droplet electrodynamics for Lab-on-a-chip”, Lab Chip, vol. 4 (4), pp. 265-277, 2004.
80 S. K. Cho, H. Moon, C.-J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits”, J. Microelectromechanical Syst., vol. 12 (1), pp. 70-80, 2003.
81 A. A. Darhuber, S. M. Troian, “Principles of microfluidic actuation by modulation of surface stresses”, Annu. Rev. Fluid Mech., vol. 37 (1), pp. 425-455, 2005.
82 G. Lippmann, “Relations entre les phenomenes electriques et capillaires”, Ann. Chim. Phys., vol. 5, 494, 1875.
83 J. A. Schwartz, J. V. Vykoukal, P. R. C. Gascoyne, “Droplet-based chemistry on a programmable micro-chip”, Lab Chip, vol. 4 (1), pp. 11-17, 2004.
84 T. B. Jones, M. Gunji, M. Washizu, M. J. Feldman, “Dielectrophoretic liquid actuation and nanodroplet formation”, J. Appl. Phys., vol. 89 (2), pp. 1441-1448, 2001.
85 T. B. Jones, K. L. Wang, D. J. Yao, “Frequency-dependent electromechanics of aqueous liquids: Electrowetting and Dielectrophoresis”, Langmuir, vol. 20(7), pp. 2813-2818, 2004.
194
86 H. A. Pohl, “Dielectrophoresis: The Behaviour of Neutral Matter in Nonuniform Electric Fields”, Cambridge University Press, Cambridge, 1978.
87 T. B. Jones, G. W. Bliss, “Bubble dielectrophoresis”, J. Appl. Phys., vol. 48 (4), pp. 1412- 1417, 1977.
88 F. F. Reuss, “Sur un nouvel effet de l'électricité galvanique“,Mémoires de la Societé Impériale des Naturalistes de Moscou, vol. 2, pp. 327- 337, 1809.
89 J. Lee and Ch.-J. Kim, “Surface-tension-driven microactuation based on continuous electrowetting”, J. Microelectromech. Syst., vol. 9 (2), pp. 171-180, 2000.
90 M. Vallet, B. Berge, L. Vovelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films”, Polymer, vol. 37 (12), pp. 2465–2470, 1996.
91 H. Dahms, “Electrocapillary measurements at the interface insulator‐electrolytic solution”, J. Electrochem. Soc., vol. 116 (11), pp. 1532–1534, 1969.
92 B. Berge, “Electrocapillarity and wetting of insulator films by water”, C. R. Acad. Sci. Paris, Série II, vol. 317, pp. 157–163, 1993.
93 G. Beni, S. Hackwood, “Electro-wetting displays”, Appl. Phys. Lett., vol. 38 (4), pp. 207–209, 1981.
94 J. Berthier, P. Silberzan, “Microfluidics for biotechnology”, 2nd Edition, Artech House Inc., Boston, 2010.
95 V. Srinivasan, “A digital microfluidic lab-on-a-chip for clinical applications”, Ph.D. thesis, Duke University, USA, 2005.
96 D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. King, R. L. Garrell, “Droplet-based microfluidics with nonaqueous solvents and solutions”, Lab Chip, vol. 6 (2), pp. 199–206, 2006.
195
97 A. Torkkeli, “Droplet microfluidics on a planar surface”, Ph.D. Thesis, Helsinki University, 2003.
98 J.N. Israelachvili, “Intermolecular and surface forces”, 3rd Edition, Academic Press, London, ISBN 0-12-375180-2, 1989.
99 D. J. Shaw, “Introduction to Colloid and surface chemistry”, 4th. Edition, Butterworth, London, ISBN 0-7506-1182-0, 1992.
100 Ch-M. Ho , Y-Ch. Tai, “Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows, J. Annu. Rev. Fluid Mech., vol. 30 (1), pp. 579-612, 1998.
101 R. Digilov, “Change-induced modification of Contact Angle: The secondary Electrocapillary Effect”, Langmuir, vol. 16 (16), pp. 6719-6723, 2000.
102 B. Shapiro, H. Moon, R.L. Garrell, and C. J. Kim, “Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations”, J. Appl. Phys., vol. 93(9), pp. 5794-5811, 2003.
103 J. R. Melcher, “Continuum electromechanics”, Section 3.7, The MIT Press, 1981.
104 V. Bahadur, S. V. Garimella, "An energy-based model for electrowetting- induced droplet actuation," J. Micromech. Microengineering, vol. 16 (8), pp. 1494-1503, 2006.
105 J. A. M. Sondag-Huethorst, L. G. J. Fokkink, “Electrical double layers on thiol-modified polycrystalline gold electrodes”, J. Electroanal. Chem., vol. 367(1-2), 49, 1994.
106 J. A. M. Sondag-Huethorst, L. G. J. Fokkink, “Potential-dependent wetting of electroactive Ferrocene-Terminated Alkanethiolate monolayers on gold”, Langmuir, vol. 10 (11), pp. 4380-4387, 1994.
107 W. J. J. Welters, L. G. J. Fokkink , “Fast electrically switchable capillary effects”, Langmuir, vol.14 (7), pp. 1535-1538, 1998.
196
108 V. Peykov, A. Quinn and J. Ralston, “Electrowetting: a model for contact-angle saturation”, Colloid Polym. Sci., vol. 278 (8), pp. 789-793, 2000.
109 J. Berthier, P. Clementz, O. Raccurt, D. Jary, P. Claustre, C. Peponnet, Y. Fouillet, “Computer aided design of an EWOD microdevice”, Sens. Actuators A, vol. 127 (2), pp. 283–294, 2006.
110 P. Y. Paik, V. K. Pamula, K. Chakrabarty, “ Thermal effects on droplet transport in digital microfluidics with applications to chip cooling”, In: Thermomechanical phenomena in electronic systems—proceedings of the intersociety conference, ITherm 2004—9th intersociety conference on thermal and thermomechanical phenomena in electronic systems, vol. 1, pp. 649–654, 2004.
111 M. Gong, C.-J. Kim, “Two-dimensional digital microfluidic system by multilayer printed circuit board”, In: 18th IEEE international conference on micro electro mechanical systems, pp. 726–729, 2005.
112 V. K. Pamula, M. G. Pollack, P. Y. Paik, H. Ren, R. B. Fair, “Apparatus for manipulating droplets by electrowetting-based techniques”, US Patent 6,911,132, June 28, 2005.
113 C. G. Cooney, C.-Y. Chen, M. R. Emerling, A. Nadim, J. D. Sterling, “Electrowetting droplet microfluidics on a single planar surface”, Microfluid Nanofluid, vol. 2 (5), pp. 435–446, 2006.
114 U.- C. Yi, C.-J. Kim, “Characterization of electrowetting actuation on addressable single-side coplanar electrodes”, J. Micromech. Microeng., vol. 16 (10), pp. 2053–2059, 2006.
115 F. Mugele, “Fundamental challenges in electrowetting: from equilibrium shapes to contact angle saturation and drop dynamics”, Soft Matter, vol. 5 (18), pp. 3377-3384, 2009.
116 T. N. Krupenkin, J. A. Taylor, T. M. Schneider, S. Yang, “From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces”, Langmuir, vol. 20 (10), pp. 3824–3827, 2004.
197
117 A. I. Drygiannakis, A. G. Papathanasiou, A. G. Boudouvis, “On the connection between dielectric breakdown strength, trapping of charge, and contact angle saturation in Electrowetting”, Langmuir, vol. 25(1), pp. 147-152, 2009.
118 H. J. J. Verheijen, M. W. J. Prins, “Reversible Electrowetting and Trapping of Charge: Model and Experiments”, Langmuir, vol. 15 (20), pp. 6616-6620, 1999.
119 P. W. Chudleigh, “Mechanism of charge transfer to a polymer surface by a conducting liquid contact”, J. Appl. Phys., vol. 47 (10), pp. 4475-4483, 1976.
120 M. Vallet, M. Vallade, B. Berge, “Limiting phenomena for the spreading of water on polymer films by electrowetting”. The European Physical Journal B - Condensed Matter and Complex Systems, vol. 11(4), pp. 583-591, 1999.
121 F. Mugele, S. Herminghaus, “Electrostatic stabilization of fluid microstructures”, Appl. Phys. Lett., vol. 81 (12), pp. 2303-2305, 2002.
122 T. Pfohl, F. Mugele, R. Seemann, S. Herminghaus, “Trends in microfluidics with complex fluids”, ChemPhysChem, vol. 4 (12), pp. 1291-1298, 2003.
123 A. Quinn, R. Sedev, J. Ralston, “Contact angle saturation in electrowetting”, J. Phys. Chem. B, vol. 109 (13), pp. 6268-6275, 2005.
124 J. Park, X. Feng, W. Lu, “Instability of electrowetting on a dielectric substrate”, J. Appl. Phys., vol. 109 (3), pp. 034309-6, 2011.
125 R. Sedev, “Electrowetting: electrocapillary, saturation, and dynamics”, Eur. Phys. J. Special Topics, vol. 197 (1), pp. 307-3019, 2011.
126 A.W. Adamson, A.P. Gast, “Physical chemistry of surfaces”, John Wiley and Sons Inc., 6th. edition, 1997.
198
127 J.S. Batchelder, “Dielectrophoretic manipulator”, Rev. Sci. Instrum., vol. 54 (3), pp. 300-302, 1983.
128 H. J. J. Verheijen, M.W. J. Prins, “Contact angles and wetting velocity measured electrically”, Rev. Sci. Instrum., vol.70 (9), pp. 3668-3673, 1999.
129 M. Washizu, “Electrostatic actuation of liquid droplets for micro-reactor applications”, IEEE Trans. Ind. Appl., vol. 34 (4), pp. 732–737, 1998.
130 J. Lee, H. Moon, J. Fowler, T. Schoellhammer, C.-J. Kim, “Electrowetting and electrowetting-on-dielectric for microscale liquid handling”, Sensors Actuators A, vol. 95 (2), pp. 259–268, 2002.
131 H. Moon, S.-K. Cho, R. L. Garrell and C.-J. Kim, “Low voltage electrowetting-on-dielectric”, J. Appl. Phys., vol. 92 (7), pp. 4080–4087, 2002.
132 P. Paik, V. K. Pamula, M. G. Pollack, R. B. Fair RB, “Electrowetting-based droplet mixers for microfluidic systems”, Lab Chip, vol. 3 (1), pp. 28–33, 2003.
133 P. Paik, V. K. Pamula, R. B. Fair RB, “Rapid droplet mixers for digital microfluidic systems”, Lab Chip, vol. 3 (4), pp. 253–259, 2003.
134 J. Y. Yoon, R. L. Garrell, “Preventing biomolecular adsorption in electrowetting-based biofluid chips”, Anal. Chem., vol. 75 (19), pp.5097-5102, 2003.
135 V. Srinivasan, V. K. Pamula, R. B. Fair, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids”, Lab Chip, vol. 4 (4), pp. 310–315, 2004.
136 V. Srinivasan, V. K. Pamula, R. B. Fair, “Droplet-based microfluidic lab-on-a-chip for glucose detection”, Anal. Chim. Acta, vol. 507 (1), pp.145–150, 2004.
137 V. Srinivasan, V. Pamula, P. Paik, R. Fair, “Protein stamping for MALDI Mass Spectrometry using an electrowetting-based microfluidic platform”, Lab-on-a-chip: platforms,
199
devices, and applications. Proceedings of SPIE, Philadelphia, Pennsylvania (PA), USA, vol. 5591, pp. 26–32, 2004.
138 A. R. Wheeler, H. Moon, C. A. Bird, R. R. O. Loo, C.-J. Kim, J. A. Loo, R. L. Garrell, “Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS”, Anal. Chem., vol. 77 (2), pp. 534–540, 2005.
139 H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, C.-J. Kim, “An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS”, Lab Chip, vol. 6 (9), pp. 1213–1219, 2006.
140 K. F. Böhringer, “Modeling and controlling parallel tasks in droplet-based microfluidic systems”, IEEE Trans. Comput. Aid Des. Integr. Circ. Syst., vol. 25 (2), pp. 334–344, 2006.
141 E. J. Griffith, S. Akella, M. K. Goldberg, “Performance characterization of a reconfigurable planar-array digital microfluidic system”, IEEE Trans. Comput. Aid Des. Integr. Circ. Syst., vol. 25 (2), pp. 345–357, 2006.
142 P. R. C. Gascoyne, J. V. Vykoukal, J. A. Schwartz, T. J. Anderson, D. M. Vykoukal, K. W. Current, C. McConaghy, F. F. Becker, C. Andrews, “Dielectrophoresis-based programmable fluidic processors”, Lab Chip, vol. 4 (4), pp. 299–309, 2004.
143 Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication”, Solid State Electron., vol. 52 (9), pp. 1382–1387, 2008.
144 J. Gong, C.-J. Kim, “Direct-referencing two-dimensional-array digital microfluidics using multilayer printed circuit board”. J. Microelectromech. Syst., vol. 17 (2), pp.257–264, 2008.
145 M. Abdelgawad, A. R. Wheeler, “Rapid prototyping in copper substrates for digital microfluidics”, Adv. Mater, vol. 19(1), pp.133–137, 2007.
200
146 M. Abdelgawad, A. R. Wheeler, “Low-cost, rapid-prototyping of digital microfluidics devices”. Microfluid Nanofluid, vol. 4 (4), pp.349–355, 2008.
147 D. L. Herbertson, C. R. Evans, N. J. Shirtcliffe, G. McHale, M. I. Newton MI, “Electrowetting on superhydrophobic SU-8 patterned surfaces”, Sens. Actuators A, vol. 130–131, pp. 189–193, 2006.
148 N. Verplanck, Y. Coffinier, V. Thomy, R. Boukherroub, “Wettability switching techniques on superhydrophobic surfaces”, Nanoscale Res. Lett., vol. 2 (12), pp. 577–596, 2007.
149 J. Heikenfeld, M. Dhindsa, "Electrowetting on Superhydrophobic Surfaces: Present Status and Prospects," Journal of Adhesion Science and Technology, vol. 22 (3-4), pp. 319-334, 2008.
150 T. Taniguchi, T. Torii, T. Higuchi, “Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media”, Lab Chip, vol. 2 (1), pp. 19–23, 2002.
151 K. P. Nichols, H. Gardeniers, “A digital microfluidic system for the investigation of pre-steady-state enzyme kinetics using rapid quenching with MALDI-TOF Mass Spectrometry”, Anal. Chem., vol. 79 (22), 8699–8704, 2007.
152 E. M. Miller, A. R. Wheeler, “A Digital microfluidic approach to homogeneous enzyme assays”, Anal. Chem., vol. 80 (5), pp. 1614–1619, 2008.
153 P.-W. Huang, T.-T. Wang, S.-W. Lin, Y.-C. Chang, S.-K. Fa, “Dielectrophoretic cell concentrator on EWOD-based chips”, Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 1418–1421, 2006.
154 I. Barbulovic-Nad, H. Yang, P. S. Park, A. R. Wheeler, “Digital Microfluidics for Cell-Based Assays”, Lab Chip, vol. 8 (4), pp. 519–526, 2008.
155 V. K. Pamula, V. Srinivasan, H. Chakrapani, R. B. Fair, E. J. Toone, “A droplet-based lab-ona-chip for colorimetric detection of nitroaromatic explosives”, In: 18th IEEE international conference on MEMS, Miami Beach, FL, USA, pp. 722–725, 2005.
201
156 M. G. Pollack, P. Y. Paik, A. D. Shenderov, V. K. Pamula, F. S. Dietrich, R. B. Fair, “Investigation of electrowetting-based microfluidics for real-time PCR applications”, Seventh international conference on miniaturized chemical and biochemical analysis systems—proceedings of the 2003 MicroTAS conference, Squaw Valley, CA, pp. 619–622, 2003.
157 Y.-H. Chang, G.-B. Lee, F.-C. Huang, Y.-Y. Chen, J.-L. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics”, Biomed. Microdevices, vol. 8 (3), pp. 215–225, 2006.
158 R. B. Fair, “Digital microfluidics: is a true lab-on-a-chip possible?”, Microfluid Nanofluid, vol. 3 (3), pp. 245–281, 2007.
159 L. Malic, T. Veres, M. Tabrizian, “ Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization”, Biosens. Bioelectron., vol. 24 (7), pp. 2218–2224, 2009.
160 H. C. Lin, Y. J. Liu, D. J. Yao, “Core-shell droplets for parallel DNA ligation of an ultra-micro volume using an EWOD microfluidic system”, JALA, vol. 15 (3), pp. 210–215, 2010.
161 M. J. Jebrail, A. R. Wheeler, “Digital microfluidic method for protein extraction by precipitation”, Anal. Chem., vol. 81 (1), pp. 330–335, 2009.
162 V. N. Luk, G. C. Mo, A. R. Wheeler, “Pluronic additives: A solution to sticky problems in digital microfluidics”, Langmuir, vol. 24 (12), pp. 6382–6389, 2008.
163 A. R. Wheeler, H. Moon, C. J. Kim, J. A. Loo, R. L. Garrell, “Electrowetting-based microfluidics for analysis of peptides and proteins by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry”, Anal. Chem., vol. 76 (16), pp. 4833–4838, 2004.
164 J. L. Poulos, W. C. Nelson, T.-J. Jeon, C.-J. C. J. Kim, J. J. Schmidt, “Electrowetting on dielectric-based microfluidics for integrated lipid bilayer formation and measurement”, Appl. Phys. Lett., vol. 95 (1), pp. 013706 (1-3), 2009.
202
165 J. Zhou, L. Lu, K. Byrapogu, D. M. Wootton, P. I. Lelkes, R. Fair, “Electrowetting-based multi-microfluidics array printing of high resolution tissue construct with embedded cells and growth factors”, Virtual and Physical Prototyping, vol. 2 (4), pp. 217–223, 2007.
166 H. Ren, R. B. Fair, M. G. Pollack, E. J. Shaughnessy, “ Dynamics of electro-wetting droplet transport”, Sens. Actuators B, vol. 87 (1), pp. 201–206, 2002.
167 A. Dolatabadi, K. Mohseni, A. Arzpeyma, "Behaviour of a moving droplet under electrowetting actuation: Numerical simulation," Canadian Journal of Chemical Engineering, vol. 84 (1), pp. 17-21, 2006.
168 A. Arzpeyma, "Numerical investigation of droplet actuation via electrowetting in microchannels," M.A.Sc. thesis, Concordia University, Montreal, 2007.
169 A. Arzpeyma, S. Bhaseen, A. Dolatabadi, P.M. Wood-Adams, "A coupled electro-hydrodynamic numerical modeling of droplet actuation by electrowetting," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 323 (1), p. 28–35, 2008.
170 S. Chakraborty, R. Mittal, “Droplet dynamics in a microchannel subjected to electrocapillary actuation”, J. Appl. Phys,, vol. 101(10), pp. 104901, 2007.
171 D. Chatterjee, H. Shepherd, R. L. Garrell, “Electromechanical model for actuating liquids in a two-plate droplet microfluidic device”, Lab Chip, vol. 9 (9), pp. 1219–1229, 2009.
172 N. Rajabi, A. Dolatabadi, “A novel electrode shape for electrowetting-based microfluidics”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 365 (1), pp. 230-236, 2010.
173 N. Rajabi, "Droplet actuation on various electrode shapes in electrowetting-based microfluidics" M.A.Sc. thesis, Concordia University, Montreal, 2009.
174 R. Bavière, J. Boutet, Y. Fouillet, “Dynamics of droplet transport induced by electrowetting actuation”, Microfluid Nanofluid, vol. 4 (4), pp. 287–294, 2008.
203
175 F. Brochard, “Motions of droplets on solid surfaces induced by chemical or thermal gradients”, Langmuir, vol. 5 (2), pp. 432–438, 1989.
176 P. Sen, C. J. Kim, “Capillary spreading dynamics of electrowetted sessile droplets in air”, Langmuir, vol. 25 (8), pp. 4302-4305, 2009.
177 S. R. Annapragada, S. Dash, S. V. Garimella, J. Y. Murthy, “Dynamics of droplet motion under electrowetting actuation”, Langmuir, vol. 27 (11), pp. 8198-8204, 2011.
178 M. J. Schertzer, S. I. Gubarenko, R. Ben-Mard, P. E. Sullivan, “An empirically validated analytical model of droplet dynamics in electrowetting on dielectric devices”, Langmuir, vol. 26 (24), pp. 19230-19238, 2010.
179 H. Oprins, B. Vandevelde, M. Baelmans, “Modeling and control of electrowetting induced droplet motion”, Micromachinnes, vol. 3 (1), pp. 150-167, 2012.
180 L. Leslie, J. friend, “Electrowetting applications”, Encyclopedia of Microfluidics and Nanofluidics, pp. 1-14, 2014.
181 J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in DC electrowetting”, Langmuir, vol. 29 (29), pp. 9118-9125, 2013.
182 H. B. Eral, D. J. C. M. ‘t Mannetje, J. M. Oh, “Contact angle hysteresis: a review of fundamentals and applications”, Colloid Polym Sci, vol. 291 (2), 247-260, 2012.
183 W. Cui, M. Zhang, X. Duan, W. Pang, D. Zhang, H. Zhang, “ Dynamics of electrowetting droplet motion in digital microfluidics systems: from dynamic saturation to device physics”, Micromachines, vol. 6 (6), pp. 778-789, 2015.
184 Q. Ni, D. E. Capecci, N. B. Crane, “Electrowetting force and velocity dependence on fluid surface energy”, Microfluid Nanofluid, vol. 19 (1), pp. 181-189, 2015.
204
185 Y. Guan, A. Y. Tong, “A numerical study of microfluidic droplet transport in a parallel-plate electrowetting-on-dielectric (EWOD) device”, Microfluidic Nanofluid, vol. 19 (6), pp. 1477-1495, 2015.
186 http://www.mcgill.ca/microfab/
187 http://scscoatings.com/what_is_parylene/parylene_properties.aspx
188 http://scscoatings.com/corporate/library.aspx
189 “Mask design guide for the EVG620 aligner “, McGill Nanotools Microfab Documents, 2006.
190 “Standard operating procedure: Solvent Clean”, McGill Nanotools Microfab Documents, 2005.
191 “MRC 603 metal sputter operation”, McGill Nanotools Microfab Documents, 2006.
192 “Tencor P1 profilometer user manual”, McGill Nanotools Microfab Documents, 2005.
193 “Laurell spin-coater user manual”, McGill Nanotools Microfab Documents, 2006.
194 “Top and bottom side lithography – EVG620 user manual”, McGill Nanotools Microfab Documents, 2005.
195 “Lithography processes available in the photoroom”, McGill Nanotools Microfab Documents, 2005.
196 http://arduino.cc/en/Guide/HomePage
197 T. G. Mason, A. Dhople, D. Wirtz, “ Linear viscoelastic moduli of concentrated DNA solutions”, Macromolecules, vol. 31 (11), pp. 3600-3603, 1998.
205
198 R. Bandyopdhyay, A. K. Sood, “Rheology of semi-dilute solutions of calf-thymus DNA”, Pramana- Journal of Physics, vol. 58 (4), pp. 685-694, 2002.
199 M. Sun, S. Pejanovic and J. Mijovic, “Dynamics of deoxyribonucleic acids solutions as studied by dielectric relaxation spectroscopy and dynamic mechanical spectroscopy”, Macromolecules, vol. 38 (23), pp. 9854-9864, 2005.
200 L. H. Sperling, “Introduction to physical polymer science”, 3rd Edition, John Wiley and Sons, New York, 2001.
201 Lecture Notes: Physical Chemistry of Polymers, Dr. Paula Wood-Adams, Concordia University, Fall 2006.
202 L. M. Bravo-Anaya, M. Rinaudo, F. A. S. Martínez, “Conformation and Rheological Properties of Calf-Thymus DNA in Solution”, Polymers (polym8020051), vol. 8 (2), 1-19, 2016.
203 F.A. Morrison, “Understanding Rheology”, Oxford University Press, 2001.
204 J. Lauger, P. Heyer, G. Pfeifer, “A new integrated Small Angle Light Scattering (Rheo-SALS) device”, Annual Transactions of the Nordic Rheology Society, vol. 12, pp. 137-140, 2004.
205 https://www.youtube.com/watch?v=SevPRumWqsE, SAXS Part 1: Introduction to Biological Small Angle Scattering.
206 A. Kalantarian, “Development of Axisymmetric Drop Shape Analysis – No Apex (ADSA-NA)” Ph.D. thesis, Toronto University, 2011.
207 A. W. Adamson, A. P. Gast, “Physical Chemistry of Surfaces”, Wiley, New York, 6th edition, 1997.
208 A. W. Neumann, R. J. Good, “Experimental methods in surface and colloid science”, Plenum Press, New York, Chapter 2, pp. 31–91, 1979.
206
209 S. Hartland, “Surface and interfacial tension: Measurement, Theory, and Applications”, Marcel Dekker, 2004.
210 C. W. Extrand, “Contact angles and their hysteresis as a measure of liquid-solid adhesion”, Langmuir, vol. 20 (10), pp. 4017–4021, 2004.
211 Y. Gu, D. Li, P. Cheng, “A novel contact angle measurement technique by analysis of capillary rise profile around a cylinder (acrpac)”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 122 (1-3), pp. 135–149, 1997.
212 A. Mennella, N. R. Morrow, “Point-by-point method of determining contact angles from dynamic Wilhelmy plate data for oil / brine / solid systems”, Journal of Colloid and Interface Science, vol. 172 (1), pp. 48–55, 1995.
213 M.E.P. Walinder, I. Johansson, “Measurement of wood wettability by the Wilhelmy method - Part 2: Determination of apparent contact angles”, Holzforschung, vol. 55 (1), pp. 33–41, 2001.
214 M. Hoorfar, A. W. Neumann, “Recent progress in Axisymmetric Drop Shape Analysis (ADSA)”, Advances in Colloid and Interface Science, vol. 121 (1), pp.25–49, 2006.
215 N. M. Dingle, M. T. Harris, “A robust algorithm for the simultaneous parameter estimation of interfacial tension and contact angle from sessile drop profiles”, Journal of Colloid and Interface Science, vol. 286 (2), pp. 670–680, 2005.
216 M. G. Cabezas, A. Bateni, J. M. Montanero, A. W. Neumann, “Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces without use of apex coordinates”, Langmuir, vol. 22, pp.10053–10060, 2006.
217 O. I. del Rio, A. W. Neumann, “Axisymmetric Drop Shape Analysis: Computational Methods for the Measurement of Interfacial Properties from the Shape and Dimensions of Pendant and Sessile Drops”, Journal of Colloid and Interface Science, vol. 196 (2), pp. 136-147, 1997.
207
218 A. F. Stadler, G. Kulik, D. Sage, L. Barbieri, P. Hoffmann, “ A snake-based approach to accurate determination of both contact points and contact angles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 286 (1), pp. 92-103, 2006.
219 A.F. Stalder, DropSnake, Biomedical Imaging Group, EPFL, http://bigwww.epfl.ch/demo/dropanalysis
220 T. Wei, S. Kaewtathip, K. Shing, “Buffer effect on protein adsorption at liquid/solid interface”, J. Phys. Chem., vol.113 (6), pp. 2053-2062, 2009.
221 H. L. Youmans, “Measurement of pH of distilled water”, J. Chem. Educ., vol. 49(6), p. 429, 1972.
222 D. G. Castner, B.D. Ratner, “Biomedical surface science: Foundations to frontiers”, Surf. Sci., vol.500 (1-3), pp. 28-60, 2002.
223 K.S. Lee, N. Ivanova, V. M. Starov, N. Hilal, V. Dustschk, “Kinetics of wetting and spreading by aqueous surfactant solutions”, Adv. Colloid Interface Sci., vol. 144 (1), pp. 54-65, 2008.
224 C.A. Ward, Jiyu Wu, “Effect of adsorption on the surface tensions of solid-fluid interfaces”, J. Phys. Chem. B, vol. 111 (14), pp. 3685-3694, 2007.
225 A. G. Banpurkar, K. P. Nichols, F. Mugele, “Electrowetting-based microdrop tensiometer”, Langmuir, vol. 24 (19), pp. 10549-10551, 2008.
226 G. He, M. H. Muser, M. O. Robbins, “Adsorbed layers and the origin of static friction”, Science, vol. 284 (5420), pp. 1650-1652, 1999.
227 J.-H. Chang, J. J. Pak, “Effect of contact angle hysteresis on electrowetting threshold for droplet transport”, J. Adhesion Science and Technology, vol. 26 (2), pp. 2105-2111, 2012.
208
228 K. Mohseni, A. Dolatabadi, “Electrowetting droplet actuation in micro scale devices”, 43th AIAA Aerospace Sciences Meeting and Exhibit, AIAA paper 2005-0677, Reno, NV, January 10-13, 2005.
229 E. Seyrat, R. A. Hayes, “Amorphous fluropolymer as insulators for reversible low-voltage electrowetting”, Journal of Applied Physics, vol. 90 (3), pp. 1383-1386, 2001.
230 W. C. Nelson, P. Sen, C.-J. Kim, “Dynamic contact angles and hysteresis under electrowetting-on-dielectric”, Langmuir, vol. 27 (16), pp. 10319-10326, 2011.
231 Y. Xu, “Tutorial: Capillary electrophoresis”, The technical educator, vol. 1 (2), Springer-Verlag Inc., New York, 1996.
232 K. D. Altria, “Capillary electrophoresis guidebook: principles, operations and applications”, Humana Press, New York, 1995.
233 G. B. Saleib-Beugelaar, K. D. Dorfman, A. van der Berg, J. C. T. Eijkel, “Electrophoretic separation of DNA in gels and nanostructures”, Lab Chip, vol. 9 (17), pp. 2508-2523, 2009.
234 M. E. Çorman, N. Bereli, S. Özkara, L. Uzun, A. Denizli, “Hydrophobic cryogels for DNA adsorption: effect of embedding of monosize microbeads into cryogel network on their adsorptive performances”, Biomed. Chromatogr., vol. 27, pp. 1524-1531, 2013.
235 K. Saeki, T. Kunito, M. Sakai, “Effect of Tris-HCl buffer on DNA adsorption by a variety of soil constituents”, Microbes Environ., vol. 26 (1), pp. 88-91, 2011.
236 A. M. O. Brett, A-M. Chiorcea, “Effect of pH and applied potential on the adsorption of DNA on highly oriented pyrolytic graphite electrodes. Atomic force microscopy surface characterisation”, Electrochemistry Communications, vol. 5, pp. 178-183, 2003.
237 B. Saoudi, N. Jammul, M.-L. Abel, M.Chehimi, G.Dodin, “DNA adsorption onto conducting polypyrrole”, Synthetic Metals, Vol. 87, pp. 97-103, 1997.
209
238 B. Bhattacharjee, “Study of droplet splitting in an electrowetting based digital microfluidic system” Ph.D. thesis, The university of British Columbia, 2012.
239 A. A. Pit, M. H. G. Duits, F. Mugele, “Droplet manipulations in two phase flow microfluidics”, Micromachines, vol. 6(11), pp. 1768-1793, 2015.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top