Login | Register

Rhythm and Melody Tasks for School-Aged Children With and Without Musical Training: Age-Equivalent Scores and Reliability


Rhythm and Melody Tasks for School-Aged Children With and Without Musical Training: Age-Equivalent Scores and Reliability

Ireland, Kierla, Parker, Averil, Foster, Nicholas and Penhune, Virginia (2018) Rhythm and Melody Tasks for School-Aged Children With and Without Musical Training: Age-Equivalent Scores and Reliability. Frontiers in Psychology, 9 (426). pp. 1-14. ISSN 1664-1078

[thumbnail of Penhune-Frontiers-2018.pdf]
Text (application/pdf)
Penhune-Frontiers-2018.pdf - Published Version
Available under License Spectrum Terms of Access.

Official URL: http://dx.doi.org/10.3389/fpsyg.2018.00426


Measuring musical abilities in childhood can be challenging. When music training and maturation occur simultaneously, it is difficult to separate the effects of specific experience from age-based changes in cognitive and motor abilities. The goal of this study was to develop age-equivalent scores for two measures of musical ability that could be reliably used with school-aged children (7–13) with and without musical training. The children's Rhythm Synchronization Task (c-RST) and the children's Melody Discrimination Task (c-MDT) were adapted from adult tasks developed and used in our laboratories. The c-RST is a motor task in which children listen and then try to synchronize their taps with the notes of a woodblock rhythm while it plays twice in a row. The c-MDT is a perceptual task in which the child listens to two melodies and decides if the second was the same or different. We administered these tasks to 213 children in music camps (musicians, n = 130) and science camps (non-musicians, n = 83). We also measured children's paced tapping, non-paced tapping, and phonemic discrimination as baseline motor and auditory abilities We estimated internal-consistency reliability for both tasks, and compared children's performance to results from studies with adults. As expected, musically trained children outperformed those without music lessons, scores decreased as difficulty increased, and older children performed the best. Using non-musicians as a reference group, we generated a set of age-based z-scores, and used them to predict task performance with additional years of training. Years of lessons significantly predicted performance on both tasks, over and above the effect of age. We also assessed the relation between musician's scores on music tasks, baseline tasks, auditory working memory, and non-verbal reasoning. Unexpectedly, musician children outperformed non-musicians in two of three baseline tasks. The c-RST and c-MDT fill an important need for researchers interested in evaluating the impact of musical training in longitudinal studies, those interested in comparing the efficacy of different training methods, and for those assessing the impact of training on non-musical cognitive abilities such as language processing.

Divisions:Concordia University > Faculty of Arts and Science > Psychology
Item Type:Article
Authors:Ireland, Kierla and Parker, Averil and Foster, Nicholas and Penhune, Virginia
Journal or Publication:Frontiers in Psychology
Date:April 2018
  • Fonds de Recherche du Québec–Société et Culture
  • Social Sciences and Humanities Research Council
  • Natural Sciences and Engineering Research Council of Canada (grant 2015-04225)
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.3389/fpsyg.2018.00426
Keywords:musical tasks, school-aged children, age-equivalent scores, discrimination, synchronization
ID Code:983691
Deposited By: Danielle Dennie
Deposited On:09 Apr 2018 14:05
Last Modified:09 Apr 2018 14:05


Aschersleben, G. (2002). Temporal control of movements in sensorimotor synchronization. Brain Cogn. 48, 66–79. doi: 10.1006/brcg.2001.1304

Baer, L. H., Park, M. T., Bailey, J. A., Chakravarty, M. M., Li, K. Z., and Penhune, V. B. (2015). Regional cerebellar volumes are related to early musical training and finger tapping performance. Neuroimage 109, 130–139. doi: 10.1016/j.neuroimage.2014.12.076

Bailey, J. A., and Penhune, V. B. (2010). Rhythm synchronization performance and auditory working memory in early- and late-trained musicians. Exp. Brain Res. 204, 91–101. doi: 10.1007/s00221-010-2299-y

Bailey, J., and Penhune, V. B. (2012). A sensitive period for musical training: contributions of age of onset and cognitive abilities. Ann. N. Y. Acad. Sci. 1252, 163–170. doi: 10.1111/j.1749-6632.2011.06434.x

Balasubramaniam, R., Wing, A. M., and Daffertshofer, A. (2004). Keeping with the beat: movement trajectories contribute to movement timing. Exp. Brain Res. 159, 129–134. doi: 10.1007/s00221-004-2066-z

Barros, C. G., Swardfager, W., Moreno, S., Bortz, G., Ilari, B., Jackowski, A. P., et al. (2017). Assessing music perception in young children: evidence for and psychometric features of the M-factor. Front. Neurosci. 11:18. doi: 10.3389/fnins.2017.00018

Bergman Nutley, S., Darki, F., and Klingberg, T. (2014). Music practice is associated with development of working memory during childhood and adolescence. Front. Hum. Neurosci. 7:926. doi: 10.3389/fnhum.2013.00926

Brody, N. (1992). Intelligence 2nd Edn. San Diego, CA: Academic Press.

Chen, J. L., Penhune, V. B., and Zatorre, R. J. (2008). Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. J. Cogn. Neurosci. 20, 226–239. doi: 10.1162/jocn.2008.20018

Corrigall, K. A., and Schellenberg, E. G. (2015). Predicting who takes music lessons: parent and child characteristics. Front. Psychol. 6:282. doi: 10.3389/fpsyg.2015.00282

Corriveau, K. H., and Goswami, U. (2009). Rhythmic motor entrainment in children with speech and language impairments: tapping to the beat. Cortex 45, 119–130. doi: 10.1016/j.cortex.2007.09.008

Costa-Giomi, E. (1999). Young children's harmonic perception. Ann. N. Y. Acad. Sci. 999, 477–484.

Dalla Bella, S., Farrugia, N., Benoit, C.-E., Begel, V., Verga, L., Harding, E., et al. (2017). BAASTA: battery for the assessment of auditory sensorimotor and timing abilities. Behav. Res. Methods 49, 1128–1145. doi: 10.3758/s13428-016-0773-6

Desrochers, A., Comeau, G., Jardaneh, N., and Green-Demers, I. (2006). L'élaboration d'une échelle pour mesurer la motivation chez les jeunes élèves en piano. Rev. Rec. Édu. Music. 33, 13–33. Available online at: https://www.mus.ulaval.ca/reem/REEM_24.pdf

Drake, C. (1993). Reproduction of musical rhythms by children, adult musicians, and adult nonmusicians. Percept. Psychophys. 53, 25–33. doi: 10.3758/BF03211712

Drake, C., Jones, M. R., and Baruch, C. (2000). The development of rhythmic attending in auditory sequences: attunement, referent period, focal attending. Cognition 77, 251–288. doi: 10.1016/S0010-0277(00)00106-2

Drewing, K., Aschersleben, G., and Li, S. C. (2006). Sensorimotor synchronization across the life span. Int. J. Behav. Dev. 30, 280–287. doi: 10.1177/0165025406066764

Ericsson, K. A., Krampe, R. T., and Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychol. Rev. 100, 363–406. doi: 10.1037/0033-295X.100.3.363

Foster, N. E., Halpern, A. R., and Zatorre, R. J. (2013). Common parietal activation in musical mental transformations across pitch and time. Neuroimage 75, 27–35. doi: 10.1016/j.neuroimage.2013.02.044

Foster, N. E., and Zatorre, R. J. (2010a). A role for the intraparietal sulcus in transforming musical pitch information. Cereb. Cortex 20, 1350–1359. doi: 10.1093/cercor/bhp199

Foster, N. E., and Zatorre, R. J. (2010b). Cortical structure predicts success in performing musical transformation judgments. Neuroimage 53, 26–36. doi: 10.1016/j.neuroimage.2010.06.042

Galván, A. (2010). Neural plasticity of development and learning. Hum. Brain Mapp. 31, 879–890. doi: 10.1002/hbm.21029

Gordon, E. E. (1979). Developmental music aptitude as measured by the primary measures of music audiation. Psychol. Music 7, 42–49. doi: 10.1177/030573567971005

Gordon, E. E. (1986). A factor analysis of the musical aptitude profile, the primary measures of music audiation, and the intermediate measures of music audiation. Bull. Counc. Res. Music Educ. 87, 17–25.

Gordon, R. L., Fehd, H. M., and McCandliss, B. D. (2015a). Does music training enhance literacy skills? A meta-analysis. Front. Psychol. 6:1777. doi: 10.3389/fpsyg.2015.01777

Gordon, R. L., Jacobs, M. S., Schuele, C. M., and Mcauley, J. D. (2016). Perspectives on the rhythm–grammar link and its implications for typical and atypical language development. Ann. N. Y. Acad. Sci. 1337, 16–25. doi: 10.1111/nyas.12683

Gordon, R. L., Shivers, C. M., Wieland, E. A., Kotz, S. A., Yoder, P. J., and Devin McAuley, J. (2015b). Musical rhythm discrimination explains individual differences in grammar skills in children. Dev. Sci. 18, 635–644. doi: 10.1111/desc.12230

Habibi, A., Cahn, B. R., Damasio, A., and Damasio, H. (2016). Neural correlates of accelerated auditory processing in children engaged in music training. Dev. Cogn. Neurosci. 21, 1–14. doi: 10.1016/j.dcn.2016.04.003

Hannon, E. E., and Johnson, S. P. (2005). Infants use meter to categorize rhythms and melodies: implications for musical structure learning. Cogn. Psychol. 50, 354–377. doi: 10.1016/j.cogpsych.2004.09.003

Hannon, E. E., and Trehub, S. E. (2005). Metrical categories in infancy and adulthood. Psychol. Sci. 16, 48–55. doi: 10.1111/j.0956-7976.2005.00779.x

Harrison, P. M. C., Collins, T., and Müllensiefen, D. (2017). Applying modern psychometric techniques to melodic discrimination testing: item response theory, computerised adaptive testing, and automatic item generation. Sci. Rep. 7:3618. doi: 10.1038/s41598-017-03586-z

Hutchins, S. M., and Peretz, I. (2012). A frog in your throat or in your ear? Searching for the causes of poor singing. J. Exp. Psychol. 141, 76–97. doi: 10.1037/a0025064

Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., et al. (2009). Musical training shapes structural brain development. J. Neurosci. 29, 3019–3025. doi: 10.1523/JNEUROSCI.5118-08.2009

Karpati, F. J., Giacosa, C., Foster, N. E., Penhune, V. B., and Hyde, K. L. (2016). Sensorimotor integration is enhanced in dancers and musicians. Exp. Brain Res. 234, 893–903. doi: 10.1007/s00221-015-4524-1

Kline, R. B. (2011). Principles and Practice of Structural Equation Modeling 3rd Edn. New York, NY: The Guilford Press.

Law, L. N. C., and Zentner, M. (2012). Assessing musical abilities objectively: construction and validation of the profile of music perception skills. PLoS ONE 7:e52508. doi: 10.1371/journal.pone.0052508

Lecanuet, J. P., Graniere-Deferre, C., Jacquet, A.-Y., and DeCasper, A. J. (2000). Fetal discrimination of low-pitched musical notes. Dev. Psychobiol. 36, 29–39. doi: 10.1002/(SICI)1098-2302(200001)36:1<29::AID-DEV4>3.0.CO;2-J

Lynch, M. P., Eilers, R. E., Oller, D. K., and Urbano, R. C. (1990). Innateness, experience, and music perception. Psychol. Sci. 1, 272–276. doi: 10.1111/j.1467-9280.1990.tb00213.x

Matthews, T. E., Thibodeau, J. N., Gunther, B. P., and Penhune, V. B. (2016). The impact of instrument-specific musical training on rhythm perception and production. Front. Psychol. 7:69. doi: 10.3389/fpsyg.2016.00069

Moreno, S., and Besson, M. (2006). Musical training and language-related brain electrical activity in children. Psychophysiology 43, 287–291. doi: 10.1111/j.1469-8986.2006.00401.x

Moreno, S., and Bidelman, G. M. (2014). Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hear. Res. 308, 84–97. doi: 10.1016/j.heares.2013.09.012

Moreno, S., Friesen, D., and Bialystok, E. (2011). Effect of Music training on promoting preliteracy skills: preliminary causal evidence. Music Percept. Int. J. 29, 165–172. doi: 10.1525/mp.2011.29.2.165

Moreno, S., Marques, C., Santos, A., Santos, M., Castro, S. L., and Besson, M. (2009). Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb. Cortex 19, 712–723. doi: 10.1093/cercor/bhn120

Moritz, C., Yampolsky, S., Papadelis, G., Thomson, J., and Wolf, M. (2013). Links between early rhythm skills, musical training, and phonological awareness. Read. Writing 26, 739–769. doi: 10.1007/s11145-012-9389-0

Nettelbeck, T., and Wilson, C. (2004). The flynn effect: smarter not faster. Intelligence 32, 85–93. doi: 10.1016/S0160-2896(03)00060-6

Patel, A. D. (2012). The OPERA hypothesis: assumptions and clarifications. Ann. N. Y. Acad. Sci. 1252, 124–128. doi: 10.1111/j.1749-6632.2011.06426.x

Peretz, I., Gosselin, N., Nan, Y., Caron-Caplette, E., Trehub, S. E., and Béland, R. (2013). A novel tool for evaluating children's musical abilities across age and culture. Front. Syst. Neurosci. 7:30. doi: 10.3389/fnsys.2013.00030

Plantinga, J., and Trainor, L. J. (2005). Memory for melody: infants use a relative pitch code. Cognition 98, 1–11. doi: 10.1016/j.cognition.2004.09.008

Plantinga, J., and Trainor, L. J. (2009). Melody recognition by two-month-old infants. J. Acoust. Soc. Am. 125, EL58–EL62. doi: 10.1121/1.3049583

Ponton, C., Eggermont, J. J., Khosla, D., Kwong, B., and Don, M. (2002). Maturation of human central auditory system activity: separating auditory evoked potentials by dipole source modeling. Clin. Neurophysiol. 113, 407–420. doi: 10.1016/S1388-2457(01)00733-7

Putkinen, V., Tervaniemi, M., Saarikivi, K., Ojala, P., and Huotilainen, M. (2013). Enhanced development of auditory change detection in musically trained school-aged children: a longitudinal event-related potential study. Dev. Sci. 17, 282–297. doi: 10.1111/desc.12109

Raven, J., Raven, J. C., and Court, J. H. (1998). Manual for Raven's Progressive Matrices and Vocablary Scales. Oxford: Oxford Psychologists Press.

Repp, B. H. (2010). Sensorimotor synchronization and perception of timing: effects of music training and task experience. Hum. Mov. Sci. 29, 200–213. doi: 10.1016/j.humov.2009.08.002

Repp, B. H., and Su, Y.-H. (2013). Sensorimotor synchronization: a review of recent research (2006–2012). Psychon. Bull. Rev. 20, 403–452. doi: 10.3758/s13423-012-0371-2

Roden, I., Grube, D., Bongard, S., and Kreutz, G. (2014a). Does music training enhance working memory performance? Findings from a quasi-experimental longitudinal study. Psychol. Music 42, 284–298. doi: 10.1177/0305735612471239

Roden, I., Könen, T., Bongard, S., Frankenberg, E., Friedrich, E. K., and Kreutz, G. (2014b). Effects of music training on attention, processing speed and cognitive music abilities—findings from a longitudinal study. Appl. Cogn. Psychol. 28, 545–557. doi: 10.1002/acp.3034

Sallat, S., and Jentschke, S. (2015). Music perception influences language acquisition: melodic and rhythmic-melodic perception in children with specific language impairment. Behav. Neurol. 2015:606470. doi: 10.1155/2015/606470

Savion-Lemieux, T., Bailey, J. A., and Penhune, V. B. (2009). Developmental contributions to motor sequence learning. Exp. Brain Res. 195, 293–306. doi: 10.1007/s00221-009-1786-5

Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychol. Sci. 15, 511–514. doi: 10.1111/j.0956-7976.2004.00711.x

Schellenberg, E. G., Bigand, E., Poulin-Charronnat, B., Garnier, C., and Stevens, C. (2005). Children's implicit knowledge of harmony in western music. Dev. Sci. 8, 551–566. doi: 10.1111/j.1467-7687.2005.00447.x

Schellenberg, E. G., and Weiss, M. W. (ed). (2013). “Music and cognitive abilities,” in The Psychology of Music, eds D. Deutsch and D. Deutsch (Mississauga, ON Department of Psychology; University of Toronto at Mississauga; Elsevier Academic Press), 499–550.

Seashore, C. E. (1915). The measurement of musical talent author. Music. Q. 1, 129–148. doi: 10.1093/mq/I.1.129

Slater, J., Strait, D. L., Skoe, E., O'Connell, S., Thompson, E., and Kraus, N. (2014). Longitudinal effects of group music instruction on literacy skills in low-income children. PLOS ONE 9:e113383. doi: 10.1371/journal.pone.0113383

Stalinski, S. M., and Schellenberg, E. G. (2012). Music cognition: a developmental perspective. Top. Cogn. Sci. 4, 485–497. doi: 10.1111/j.1756-8765.2012.01217.x

Sutherland, M. E., Paus, T., and Zatorre, R. J. (2013). Neuroanatomical correlates of musical transposition in adolescents: a longitudinal approach. Front. Sys. Neurosci. 7:113. doi: 10.3389/fnsys.2013.00113

Swaminathan, S., Schellenberg, E. G., and Khalil, S. (2016). Revisiting the association between music lessons and intelligence: Training effects or music aptitude? Intelligence 62, 119–124. doi: 10.1016/j.intell.2017.03.005

Tierney, A., and Kraus, N. (2013). The ability to move to a beat is linked to the consistency of neural responses to sound. J. Neurosci. 33, 14981–14988. doi: 10.1523/JNEUROSCI.0612-13.2013

Tierney, A. T., and Kraus, N. (2013). The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills. Brain Lang. 124, 225–231. doi: 10.1016/j.bandl.2012.12.014

Trainor, L. J., and Corrigal, K. A. (2010). “Music aquisition and effects of musical experience,” in Music Perception, Vol. 36, eds M. R. Jones, R. R. Fay, and A. N. Popper (New York, NY: Spinger), 89–127.

Trainor, L. J., and Trehub, S. E. (1994). Key membership and implied harmony in Western tonal music: developmental perspectives. Percept. Psychophys. 56, 125–132. doi: 10.3758/BF03213891

Tryfon, A., Foster, N. E., Ouimet, T., Doyle-Thomas, K., Anagnostou, E., Sharda, M., et al. (2017). Auditory-motor rhythm synchronization in children with autism spectrum disorder. Res. Autism Spectrum Disord. 35, 51–61. doi: 10.1016/j.rasd.2016.12.004

Wechsler, D. (2003). WISC-IV Technical and Interpretive Manual. San Antonio, TX: Psychological Corporation.

Whitall, J., Chang, T. Y., Horn, C. L., Jung-Potter, J., McMenamin, S., Wilms-Floet, A., et al. (2008). Auditory-motor coupling of bilateral finger tapping in children with and without DCD compared to adults. Hum. Mov. Sci. 27, 914–931. doi: 10.1016/j.humov.2007.11.007
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top