Login | Register

Engineering Saccharomyces cerevisiae for conversion of methanol into biomass


Engineering Saccharomyces cerevisiae for conversion of methanol into biomass

Vallerand-Legault, Alex (2018) Engineering Saccharomyces cerevisiae for conversion of methanol into biomass. Masters thesis, Concordia University.

[thumbnail of Vallerand_MSc_F2019.pdf]
Text (application/pdf)
Vallerand_MSc_F2019.pdf - Accepted Version
Available under License Spectrum Terms of Access.


The effect of greenhouse gases on the environment has been well documented. In effort to mitigate the addition of greenhouse gases to the environment, there has been a collective effort to reduce our dependency on fossil fuel. One of the many ways to reduce this dependency is to find alternative methods for producing high-valued chemicals that are currently derived from fossil fuels. Due to the increasing bioengineering tools made available, this branch of science has greatly evolved and has facilitated the production of different high-valued chemical commodities in model organisms such as Escherichia coli or Saccharomyces cerevisiae.
However, a great barrier to commercialization of these high-valued bioproducts is their high production cost. Thus, in this thesis we focus on reducing the cost of the carbon feedstock by engineering yeast Saccharomyces cerevisiae to utilize methanol instead of glucose, the preferred but expensive carbon source. A three gene pathway found in Bacillus methanolicus was introduced in a strain of S. cerevisiae, enabling it to assimilate methanol. Overall, we were able to engineer S. cerevisiae to assimilate methanol and observed a 13.54% increase in biomass synthesis in the presence of 5mM methanol. We show the ability of our engineered strains to convert methanol to amino acids using 13C-labeled methanol. As well, we show a 2.2 to 3.7-fold increase in 13C-labeled amino acids when the media was supplemented with yeast extract.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Concordia University > Research Units > Centre for Structural and Functional Genomics
Item Type:Thesis (Masters)
Authors:Vallerand-Legault, Alex
Institution:Concordia University
Degree Name:M. Sc.
Date:December 2018
Thesis Supervisor(s):Martin, Vincent
Keywords:AMP Adenosine Monophosphate ADP Adenosine Diphosphate ATP Adenosine Triphosphate Pi Phosphate RNA Ribonucleic acid DNA Deoxyribonucleic acid KanMX Kanamycine MDH.M Methanol dehydrogenase from Bacillus methanolicus MGA3 MDH.P Methanol dehydrogenase from Bacillus methanolicus PB1 HPS.M 3-Hexulose-6-phosphate synthase from Bacillus methanolicus MGA3 HPS.P 3-Hexulose-6-phosphate synthase from Bacillus methanolicus PB1 PHI.M 3-Hexulose-6-phosphate isomerase from Bacillus methanolicus MGA3 PHI.P 3-Hexulose-6-phosphate isomerase from Bacillus methanolicus PB1 ACT.M Activator protein from Bacillus methanolicus MGA3 ACT.P Activator protein from Bacillus methanolicus PB1 AOX Alcohol oxidase MO Methanol Oxidase ADH Alcohol dehydrogenase DAS Dihydroxyacetone synthase CAT Catalase FrmA S-(hydroxymethyl)glutathione dehydrogenase or formaldehyde dehydrogenase XPK Phosphoketolase FPK Fructose phosphate synthase H6P 3-hexulose-6-phosphate F6P Fructose-6-phosphate Xu5P Xylulose-5-phosphate Ru5P Ribulose-5-phosphate FALD Formaldehyde MEOH Methanol CO Carbon monoxide CO2 Carbon Dioxide ddH2O Double distilled water PQQ Pyrroloquinoline quinone NAD(H) Nicotinamide adenine dinucleotide (NAD) + hydrogen NADP(H) Nicotinamide adenine dinucleotide phosphate FAD Flavin adenine dinucleotide RuMP Ribulose MonoPhosphate XuMP Xylulose MonoPhosphate MCC Methanol condensation cycle NOG Non-oxidative glycolysis YPD Yeast Peptone Dextrose ETS Electron Transport System CRISPR Clustered Regularly Interspaced Short Palindromic Repeats Cas9 CRISPR associated protein 9 KM Mechaelis-Menten constant KCAT Catalytic activity of the enzyme VMAX Maximum velocity of the enzyme
ID Code:984930
Deposited On:27 Oct 2022 13:49
Last Modified:27 Oct 2022 13:49


[1] K. Ghasemzadeh, S. M. Sadati Tilebon, M. Nasirinezhad, and A. Basile, “Economic Assessment of Methanol Production,” in Methanol, Elsevier, 2018, pp. 613–632.
[2] Q. Fei, H. N. Chang, L. Shang, and J. D. R. Choi, “Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus,” Biotechnol. Bioprocess Eng., vol. 16, no. 3, pp. 482–487, 2011.
[3] J. Daniell, M. Köpke, and S. Simpson, “Commercial Biomass Syngas Fermentation,” Energies, vol. 5, no. 12, pp. 5372–5417, Dec. 2012.
[4] J. L. D. C. P. Brandão, “Summary for Policymakers,” in Climate Change 2013 - The Physical Science Basis, Intergovernmental Panel on Climate Change, Ed. Cambridge: Cambridge University Press, 2011, pp. 1–30.
[5] L. Yang, X. Ge, C. Wan, F. Yu, and Y. Li, “Progress and perspectives in converting biogas to transportation fuels,” Renew. Sustain. Energy Rev., vol. 40, pp. 1133–1152, 2014.
[6] T. Amon, B. Amon, V. Kryvoruchko, A. Machmüller, K. Hopfner-Sixt, V. Bodiroza, R. Hrbek, J. Friedel, E. Pötsch, H. Wagentristl, M. Schreiner, and W. Zollitsch, “Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations,” Bioresour. Technol., vol. 98, no. 17, pp. 3204–3212, 2007.
[7] P. Havlík, U. A. Schneider, E. Schmid, H. Böttcher, S. Fritz, R. Skalský, K. Aoki, S. De Cara, G. Kindermann, F. Kraxner, S. Leduc, I. McCallum, A. Mosnier, T. Sauer, and M. Obersteiner, “Global land-use implications of first and second generation biofuel targets,” Energy Policy, vol. 39, no. 10, pp. 5690–5702, 2011.
[8] H. Boerrigter and a Van Der Drift, “‘Biosyngas’ Key Intermediate in Production of Renewable Transportation Fuels, Chemicals, and Electricity: Optimum Scale and Economic Prospects of Fischer-Tropsch Plants.,” Proc. 14th Eur. Biomass, no. October, pp. 17–21, 2005.
[9] N. A. Samiran, M. N. M. Jaafar, J. H. Ng, S. S. Lam, and C. T. Chong, “Progress in biomass gasification technique - With focus on Malaysian palm biomass for syngas production,” Renew. Sustain. Energy Rev., vol. 62, pp. 1047–1062, 2016.
[10] C. J. Paddon and J. D. Keasling, “Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development,” Nat. Rev. Microbiol., vol. 12, no. 5, pp. 355–367, 2014.
[11] K. A. Curran, J. M. Leavitt, A. S. Karim, and H. S. Alper, “Metabolic engineering of muconic acid production in Saccharomyces cerevisiae,” Metab. Eng., vol. 15, pp. 55–66, Jan. 2013.
[12] M. Guo, W. Song, and J. Buhain, “Bioenergy and biofuels: History, status, and perspective,” Renew. Sustain. Energy Rev., vol. 42, pp. 712–725, 2015.
[13] R. De Maria, I. Diaz, M. Rodriguez, and A. Saiz, “Industrial methanol from syngas: Kinetic study and process simulation,” Int. J. Chem. React. Eng., vol. 11, no. 1, pp. 469–477, 2013.
[14] P. McKendry, “Energy production from biomass (part 3): Gasification technologies,” Bioresour. Technol., vol. 83, no. 1, pp. 55–63, 2002.
[15] M. Puig-Arnavat, J. C. Bruno, and A. Coronas, “Review and analysis of biomass gasification models,” Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 2841–2851, 2010.
[16] H. Boerrigter and R. Rauch, “Review of applications of gases from biomass gasification,” in ECN Biomass, Coal and Environmental …, no. June, 2006, p. 33.
[17] J. E. N. Müller, F. Meyer, B. Litsanov, P. Kiefer, E. Potthoff, S. Heux, W. J. Quax, V. F. Wendisch, and T. Brautaset, “Engineering Escherichia coli for methanol conversion,” Metab. Eng., vol. 28, pp. 190–201, 2015.
[18] A. Krog, T. M. B. Heggeset, J. E. N. Müller, C. E. Kupper, O. Schneider, J. a. Vorholt, T. E. Ellingsen, and T. Brautaset, “Methylotrophic Bacillus methanolicus Encodes Two Chromosomal and One Plasmid Born NAD+ Dependent Methanol Dehydrogenase Paralogs with Different Catalytic and Biochemical Properties,” PLoS One, vol. 8, no. 3, 2013.
[19] P. Goswami, S. S. R. Chinnadayyala, M. Chakraborty, A. K. Kumar, and A. Kakoti, “An overview on alcohol oxidases and their potential applications,” Appl. Microbiol. Biotechnol., vol. 97, no. 10, pp. 4259–4275, 2013.
[20] M. A. Gleeson and P. E. Sudbery, “The methylotrophic yeasts,” Yeast, vol. 4, no. 1, pp. 1–15, Mar. 1988.
[21] F. Chu and M. E. Lidstrom, “XoxF acts as the predominant methanol dehydrogenase in the type I methanotroph Methylomicrobium buryatense,” J. Bacteriol., vol. 198, no. 8, pp. 1317–1325, 2016.
[22] J. T. Keltjens, A. Pol, J. Reimann, and H. J. M. Op Den Camp, “PQQ-dependent methanol dehydrogenases: Rare-earth elements make a difference,” Appl. Microbiol. Biotechnol., vol. 98, no. 14, pp. 6163–6183, 2014.
[23] A. M. Ochsner, J. E. N. Müller, C. A. Mora, and J. A. Vorholt, “In vitro activation of NAD-dependent alcohol dehydrogenases by Nudix hydrolases is more widespread than assumed,” FEBS Lett., vol. 588, no. 17, pp. 2993–2999, 2014.
[24] T. Brautaset, ??yvind M. Jakobsen, M. C. Flickinger, S. Valla, and T. E. Ellingsen, “Plasmid-Dependent Methylotrophy in Thermotolerant Bacillus methanolicus,” J. Bacteriol., vol. 186, no. 5, pp. 1229–1238, 2004.
[25] M. C. Sheehan, C. J. Bailey, B. C. Dowds, and D. J. McConnell, “A new alcohol dehydrogenase, reactive towards methanol, from Bacillus stearothermophilus.,” Biochem. J., vol. 252, no. 3, pp. 661–666, 1988.
[26] W. B. Whitaker, J. A. Jones, R. K. Bennett, J. E. Gonzalez, V. R. Vernacchio, S. M. Collins, M. A. Palmer, S. Schmidt, M. R. Antoniewicz, M. A. Koffas, and E. T. Papoutsakis, “Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli,” Metab. Eng., vol. 39, no. November 2016, pp. 49–59, 2017.
[27] S. N. Ruzheinikov, J. Burke, S. Sedelnikova, P. J. Baker, R. Taylor, P. a. Bullough, N. M. Muir, M. G. Gore, and D. W. Rice, “Glycerol Dehydrogenase,” Structure, vol. 9, no. 9, pp. 789–802, 2001.
[28] N. Arfman, H. J. Hektor, L. V Bystrykh, N. I. Govorukhina, L. Dijkhuizen, and J. Frank, “Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus.,” Eur. J. Biochem., vol. 244, no. 2, pp. 426–433, 1997.
[29] N. Arfman, J. Van Beeumen, G. E. De Vries, W. Harder, and L. Dijkhuizen, “Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp,” J. Biol. Chem., vol. 266, no. 6, pp. 3955–3960, 1991.
[30] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman, “Gapped BLAST and PS I-BLAST: a new generation of protein database search programs,” Nucleic Acids Res, vol. 25, no. 17, pp. 3389–3402, 1997.
[31] R. K. Bajpai, M. Reub, and W. Held, “Regulation Phenomena in Methanol Consuming Yeasts : An Experiment with Model Discrimination,” vol. XXIII, pp. 499–521, 1981.
[32] T. J. Lawton and A. C. Rosenzweig, “Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion,” J. Am. Chem. Soc., vol. 138, no. 30, pp. 9327–9340, 2016.
[33] Q. Fei, M. T. Guarnieri, L. Tao, L. M. L. Laurens, N. Dowe, and P. T. Pienkos, “Bioconversion of natural gas to liquid fuel: Opportunities and challenges,” Biotechnol. Adv., vol. 32, no. 3, pp. 596–614, 2014.
[34] F. Baneyx, Protein Expression Technologies: Current Status and Future Trends. Wymondham, Norfolk, U.K: Horizon Bioscience, 2003.
[35] M. Geier, C. Brandner, G. A. Strohmeier, M. Hall, F. S. Hartner, and A. Glieder, “Engineering Pichia pastoris for improved NADH regeneration: A novel chassis strain for whole-cell catalysis,” Beilstein J. Org. Chem., vol. 11, pp. 1741–1748, 2015.
[36] I. W. Bogorad, C.-T. Chen, M. K. Theisen, T.-Y. Wu, A. R. Schlenz, A. T. Lam, and J. C. Liao, “Building carbon–carbon bonds using a biocatalytic methanol condensation cycle,” Proc. Natl. Acad. Sci., vol. 111, no. 45, pp. 15928–15933, 2014.
[37] J. R. Dickinson, L. E. J. Salgado, and M. J. E. Hewlins, “The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae,” J. Biol. Chem., vol. 278, no. 10, pp. 8028–8034, 2003.
[38] Z. Dai, H. Gu, S. Zhang, F. Xin, W. Zhang, W. Dong, J. Ma, H. Jia, and M. Jiang, “Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae,” Bioresour. Technol., vol. 245, pp. 1407–1412, 2017.
[39] S. Witthoff, K. Schmitz, S. Niedenführ, K. Nöh, S. Noack, M. Bott, and J. Marienhagen, “Metabolic engineering of Corynebacterium glutamicum for methanol metabolism,” Appl. Environ. Microbiol., vol. 81, no. 6, pp. 2215–2225, 2015.
[40] L. Leßmeier, J. Pfeifenschneider, M. Carnicer, S. Heux, J. C. Portais, and V. F. Wendisch, “Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate,” Appl. Microbiol. Biotechnol., vol. 99, no. 23, pp. 10163–10176, 2015.
[41] I. Thiele and B. Ø. Palsson, “A protocol for generating a high-quality genome-scale metabolic reconstruction,” Nat. Protoc., vol. 5, no. 1, pp. 93–121, 2010.
[42] S. J. Jol, A. Kümmel, M. Terzer, J. Stelling, and M. Heinemann, “System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes,” PLoS Comput. Biol., vol. 8, no. 3, pp. 1–9, 2012.
[43] S. A. Becker, A. M. Feist, M. L. Mo, G. Hannum, B. Ø. Palsson, and M. J. Herrgard, “Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox.,” Nat. Protoc., vol. 2, no. 3, pp. 727–38, 2007.
[44] A. Makhorin, “GNU Linear Programming Kit.” Free Software Foundation, Inc, Moscoq, p. 229, 2010.
[45] Gurobi Optimization Inc., “Gurobi Optimizer Reference Manual - Version 6.5.” p. 592, 2016.
[46] “{GLPK} ({GNU} Linear Programming Kit).” 2006.
[47] C. Verduyn, a H. Stouthamer, W. a Scheffers, and J. P. van Dijken, “A theoretical evaluation of growth yields of yeasts.,” Antonie Van Leeuwenhoek, vol. 59, no. 1, pp. 49–63, 1991.
[48] I. Famili, J. Forster, J. Nielsen, and B. O. Palsson, “Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network.,” Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 23, pp. 13134–9, 2003.
[49] J. Postmus, I. Tuzun, M. Bekker, W. H. Muller, M. J. Teixeira de Mattos, S. Brul, and G. J. Smits, “Dynamic regulation of mitochondrial respiratory chain efficiency in Saccharomyces cerevisiae,” Microbiology, vol. 157, no. 12, pp. 3500–3511, 2011.
[50] R. Wulf, A. Kaltstein, and M. Klingenberg, “H+ and Cation Movements Associated With Adp, Atp Transport in Mitochondria,” Eur. J. Biochem., vol. 82, no. 2, pp. 585–592, 1978.
[51] J. M. Cherry, E. L. Hong, C. Amundsen, R. Balakrishnan, G. Binkley, E. T. Chan, K. R. Christie, M. C. Costanzo, S. S. Dwight, S. R. Engel, D. G. Fisk, J. E. Hirschman, B. C. Hitz, K. Karra, C. J. Krieger, S. R. Miyasato, R. S. Nash, J. Park, M. S. Skrzypek, M. Simison, S. Weng, and E. D. Wong, “Saccharomyces Genome Database: The genomics resource of budding yeast,” Nucleic Acids Res., vol. 40, no. D1, pp. 700–705, 2012.
[52] I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, and D. Schomburg, “BRENDA, the enzyme database: updates and major new developments.,” Nucleic Acids Res., vol. 32, no. Database issue, pp. D431-3, 2004.
[53] M. Kanehisa and S. Goto, “Yeast Biochemical Pathways. KEGG: Kyoto encyclopedia of genes and genomes,” Nucleic Acids Res, vol. 28, no. 1, pp. 27–30, 2000.
[54] M. L. Mo, B. Ø. Palsson, and M. J. Herrgard, “Connecting extracellular metabolomic measurements to intracellular flux states in yeast.,” BMC Syst. Biol., vol. 3, p. 37, 2009.
[55] I. Nookaew, M. C. Jewett, A. Meechai, C. Thammarongtham, K. Laoteng, S. Cheevadhanarak, J. Nielsen, and S. Bhumiratana, “The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism.,” BMC Syst. Biol., vol. 2, no. 1, p. 71, Jan. 2008.
[56] R. Chowdhury, A. Chowdhury, and C. D. Maranas, “Using Gene Essentiality and Synthetic Lethality Information to Correct Yeast and CHO Cell Genome-Scale Models.,” Metabolites, vol. 5, no. 4, pp. 536–70, Jan. 2015.
[57] M. Riffle, L. Malmstr??m, and T. N. Davis, “The Yeast Resource Center Public Data Repository,” Nucleic Acids Res., vol. 33, no. DATABASE ISS., pp. 378–382, 2005.
[58] J. L. Y. Koh, Y. T. Chong, H. Friesen, A. Moses, C. Boone, B. J. Andrews, and J. Moffat, “CYCLoPs: A Comprehensive Database Constructed from Automated Analysis of Protein Abundance and Subcellular Localization Patterns in Saccharomyces cerevisiae.,” G3 (Bethesda)., vol. 5, no. 6, pp. 1223–32, Apr. 2015.
[59] G. Habeler, K. Natter, G. G. Thallinger, M. E. Crawford, S. D. Kohlwein, and Z. Trajanoski, “YPL.db: the Yeast Protein Localization database.,” Nucleic Acids Res., vol. 30, no. 1, pp. 80–83, 2002.
[60] W.-K. Huh, J. Falvo, W.-K. Huh, J. V Falvo, L. Gerke, A. Carroll, L. C. Gerke, A. S. Carroll, R. Howson, J. Weissman, R. W. Howson, E. O’Shea, J. S. Weissman, and E. K. O’Shea, “Global analysis of protein localization in budding yeast.,” Nature, vol. 425, no. 6959, pp. 686–91, 2003.
[61] N. Wiwatwattana, C. M. Landau, G. J. Cope, G. A. Harp, and A. Kumar, “Organelle DB: An updated resource of eukaryotic protein localization and function,” Nucleic Acids Res., vol. 35, no. SUPPL. 1, pp. 810–814, 2007.
[62] U. Schulze, “Anaerobic Physiology of Saccharomyces cerevisiae,” Technical University of Denmark, 1995.
[63] E. Oura, “The effect of aeration intensity on the biochemical composition of Baker’s yeast: Activities of enzymes of the glycolytic and pentose phosphate pathways,” Biotechnol. Bioeng., vol. 18, no. 3, pp. 415–420, Mar. 1976.
[64] C. Verduyn, “Physiology of yeasts in relation to biomass yields.,” Antonie Van Leeuwenhoek, vol. 60, no. 3–4, pp. 325–353, 1991.
[65] A. N. N. Vaughan-martini and A. Martini, “A Taxonomic Key for the Genus Saccharomyces,” Syst. Appl. Microbiol., vol. 16, no. 1, pp. 113–119, 1993.
[66] Colin Ratledge and Christopher T. Evans, “Lipids and their Metabolism,” The Yeasts, vol. 3, pp. 367–444, 1989.
[67] G. G. Zampar, A. Kümmel, J. Ewald, S. Jol, B. Niebel, P. Picotti, R. Aebersold, U. Sauer, N. Zamboni, M. Heinemann, a. Kummel, J. Ewald, S. Jol, B. Niebel, P. Picotti, R. Aebersold, U. Sauer, N. Zamboni, M. Heinemann, A. Kü Mmel, J. Ewald, S. Jol, B. Niebel, P. Picotti, R. Aebersold, U. Sauer, N. Zamboni, and M. Heinemann, “Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast,” Mol. Syst. Biol., vol. 9, no. 651, pp. 651–651, 2014.
[68] K. Correia and R. Mahadevan, “Pan-genome-scale network reconstruction: a framework to increase the quantity and quality of metabolic network reconstructions throughout the tree of life,” bioRxiv, p. 412593, 2018.
[69] G. Jansen, C. Wu, B. Schade, D. Y. Thomas, and M. Whiteway, “Drag&Drop cloning in yeast,” Gene, vol. 344, pp. 43–51, 2005.
[70] O. W. Ryan, J. M. Skerker, M. J. Maurer, X. Li, J. C. Tsai, S. Poddar, M. E. Lee, W. DeLoache, J. E. Dueber, A. P. Arkin, and J. H. D. Cate, “Selection of chromosomal DNA libraries using a multiplex CRISPR system,” Elife, vol. 3, no. August2014, pp. 1–15, Aug. 2014.
[71] B. Bakker, “Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae,” FEMS Microbiol. Rev., vol. 25, no. 1, pp. 15–37, Jan. 2001.
[72] L. Bourgeois, M. E. Pyne, and V. J. J. Martin, “A Highly Characterized Synthetic Landing Pad System for Precise Multicopy Gene Integration in Yeast,” ACS Synth. Biol., vol. 7, no. 11, pp. 2675–2685, Nov. 2018.
[73] D. B. Flagfeldt, V. Siewers, L. Huang, and J. Nielsen, “Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae.,” Yeast, vol. 26, no. 10, pp. 545–551, 2009.
[74] M. D. Mikkelsen, L. D. Buron, B. Salomonsen, C. E. Olsen, B. G. Hansen, U. H. Mortensen, and B. A. Halkier, “Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform,” Metab. Eng., vol. 14, no. 2, pp. 104–111, 2012.
[75] M. Grey, M. Schmidt, and M. Brendel, “Overexpression of ADH1 confers hyper-resistance to formaldehyde in Saccharomyces cerevisiae.,” Curr. Genet., vol. 29, no. 5, pp. 437–440, 1996.
[76] E. P. Wehner, E. Rao, and M. Brendel, “Molecular structure and genetic regulation of SFA, a gene responsible for resistance to formaldehyde in Saccharomyces cerevisiae, and characterization of its protein product.,” Mol. Gen. Genet., vol. 237, no. 3, pp. 351–8, Mar. 1993.
[77] K. Weinhandl, M. Winkler, A. Glieder, and A. Camattari, “Carbon source dependent promoters in yeasts,” Microb. Cell Fact., vol. 13, no. 1, p. 5, 2014.
[78] L. Caspeta, S. Shoaie, R. Agren, I. Nookaew, and J. Nielsen, “Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in-silico evaluation of their potentials,” BMC Syst. Biol., vol. 6, no. 1, p. 24, 2012.
[79] D. Yasokawa, S. Murata, Y. Iwahashi, E. Kitagawa, R. Nakagawa, T. Hashido, and H. Iwahashi, “Toxicity of methanol and formaldehyde towards Saccharomyces cerevisiae as assessed by DNA microarray analysis,” Appl. Biochem. Biotechnol., vol. 160, no. 6, pp. 1685–1698, 2010.
[80] M. A. H. Luttik, K. M. Overkamp, P. Kötter, S. De Vries, J. P. Van Dijken, and J. T. Pronk, “The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH,” J. Biol. Chem., vol. 273, no. 38, pp. 24529–24534, 1998.
[81] F. Rodrigues, P. Ludovico, and C. Leão, “Sugar Metabolism in Yeasts: an Overview of Aerobic and Anaerobic Glucose Catabolism,” in Biodiversity and Ecophysiology of Yeasts, Berlin/Heidelberg: Springer-Verlag, 2006, pp. 101–121.
[82] K. Larsson, R. Ansell, P. Eriksson, and L. Adler, “A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD + ) complements an osmosensitive mutant of Saccharomyces cerevisiae,” Mol. Microbiol., vol. 10, no. 5, pp. 1101–1111, Dec. 1993.
[83] C. M. Bussineau and E. T. Papoutsakis, “Intracellular reaction rates, enzyme activities and biomass yields in Methylomonas L3: growth rate and substrate composition effects,” Appl. Microbiol. Biotechnol., vol. 24, no. 6, pp. 435–442, 1986.
[84] J. E. Gonzalez, R. K. Bennett, E. T. Papoutsakis, and M. R. Antoniewicz, “Methanol assimilation in Escherichia coli is improved by co-utilization of threonine and deletion of leucine-responsive regulatory protein,” Metab. Eng., vol. 45, no. August 2017, pp. 67–74, 2018.
[85] T. Hasunuma, T. Sanda, R. Yamada, K. Yoshimura, J. Ishii, and A. Kondo, “Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae.,” Microb. Cell Fact., vol. 10, no. 1, p. 2, 2011.
[86] Y. H. Lau, T. W. Giessen, W. J. Altenburg, and P. A. Silver, “Prokaryotic nanocompartments form synthetic organelles in a eukaryote,” Nat. Commun., vol. 9, no. 1, 2018.
[87] P. M. Bruinenberg, J. P. Van Dijken, and W. a. Scheffers, “A Theoretical Analysis of NADPH Production and Consumption in Yeasts,” Microbiology, vol. 129, no. 4, pp. 953–964, 1983.
[88] S. A. Henry, Membrane Lipids of Yeast: Biochemical and Genetic Studies, vol. 11B. 1982.
[89] B. D. Heavner and N. D. Price, “Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction,” PLoS Comput. Biol., vol. 11, no. 11, pp. 1–26, 2015.
[90] W. Zhang, C. P. Liu, M. Inan, and M. M. Meagher, “Optimization of cell density and dilution rate in Pichia pastoris continuous fermentations for production of recombinant proteins,” J. Ind. Microbiol. Biotechnol., vol. 31, no. 7, pp. 330–334, 2004.
[91] Y. Morales, M. Tortajada, J. Picó, J. Vehí, and F. Llaneras, “Validation of an FBA model for Pichia pastoris in chemostat cultures,” BMC Syst. Biol., vol. 8, p. 142, 2014.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top