Login | Register

Bicaudal C mutation causes myc and TOR pathway up-regulation and polycystic kidney disease-like phenotypes in Drosophila


Bicaudal C mutation causes myc and TOR pathway up-regulation and polycystic kidney disease-like phenotypes in Drosophila

Gamberi, Chiara ORCID: https://orcid.org/0000-0002-7122-6491, Hipfner, David R., Trudel, Marie and Lubell, William D. (2017) Bicaudal C mutation causes myc and TOR pathway up-regulation and polycystic kidney disease-like phenotypes in Drosophila. PLoS Genetics .

[thumbnail of journal.pgen.1006694.pdf]
Text (application/pdf)
journal.pgen.1006694.pdf - Published Version
Available under License Creative Commons Attribution.

Official URL: https://doi.org/10.1371/journal.pgen.1006694


Progressive cystic kidney degeneration underlies diverse renal diseases, including the most common cause of kidney failure, autosomal dominant Polycystic Kidney Disease (PKD). Genetic analyses of patients and animal models have identified several key drivers of this disease. The precise molecular and cellular changes underlying cystogenesis remain, however, elusive. Drosophila mutants lacking the translational regulator Bicaudal C (BicC, the fly ortholog of vertebrate BICC1 implicated in renal cystogenesis) exhibited progressive cystic degeneration of the renal tubules (so called ªMalpighianº tubules) and reduced renal function. The BicC protein was shown to bind to Drosophila (d-) myc mRNA in tubules. Elevation of d-Myc protein levels was a cause of tubular degeneration in BicC mutants. Activation of the Target of Rapamycin (TOR) kinase pathway, another common feature of PKD, was found in BicC mutant flies. Rapamycin administration substantially reduced the cystic phenotype in flies. We present new mechanistic insight on BicC function and propose that Drosophila may serve as a genetically tractable model for dissecting the evolutionarily-conserved molecular mechanisms of renal cystogenesis.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Article
Authors:Gamberi, Chiara and Hipfner, David R. and Trudel, Marie and Lubell, William D.
Journal or Publication:PLoS Genetics
Date:13 April 2017
  • Natural Sciences and Engineering Research Council of Canada (NSERC)
  • The Polycystic Kidney Disease Foundation
  • Canadian Institute for Health Research (CIHR)
  • Concordia University Part time Faculty Association Professional Development Award
Digital Object Identifier (DOI):10.1371/journal.pgen.1006694
ID Code:985018
Deposited On:26 Feb 2019 19:36
Last Modified:26 Feb 2019 19:36
Related URLs:


1. Harris PC, Torres VE (2009) Polycystic kidney disease. Annual review of medicine 60: 321–337. pmid:18947299

2. Lancaster MA, Gleeson JG (2010) Cystic kidney disease: the role of Wnt signaling. Trends in molecular medicine 16: 349–360. pmid:20576469

3. Peters DJ, Sandkuijl LA (1992) Genetic heterogeneity of polycystic kidney disease in Europe. Contributions to nephrology 97: 128–139. pmid:1633713

4. Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, et al. (2007) Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. Journal of the American Society of Nephrology: JASN 18: 2143–2160. pmid:17582161

5. Bonnet CS, Aldred M, von Ruhland C, Harris R, Sandford R, et al. (2009) Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Human molecular genetics 18: 2166–2176. pmid:19321600

6. Fischer DC, Jacoby U, Pape L, Ward CJ, Kuwertz-Broeking E, et al. (2009) Activation of the AKT/mTOR pathway in autosomal recessive polycystic kidney disease (ARPKD). Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association—European Renal Association 24: 1819–1827.

7. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, et al. (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America 103: 5466–5471. pmid:16567633

8. Happe H, Peters DJ (2014) Translational research in ADPKD: lessons from animal models. Nature reviews Nephrology 10: 587–601. pmid:25137562

9. Hartman TR, Liu D, Zilfou JT, Robb V, Morrison T, et al. (2009) The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Human molecular genetics 18: 151–163. pmid:18845692

10. Ibraghimov-Beskrovnaya O, Natoli TA (2011) mTOR signaling in polycystic kidney disease. Trends in molecular medicine 17: 625–633. pmid:21775207

11. Gattone VH 2nd, Sinders RM, Hornberger TA, Robling AG (2009) Late progression of renal pathology and cyst enlargement is reduced by rapamycin in a mouse model of nephronophthisis. Kidney international 76: 178–182. pmid:19421190

12. Fonseca BD, Smith EM, Yelle N, Alain T, Bushell M, et al. (2014) The ever-evolving role of mTOR in translation. Seminars in cell & developmental biology 36: 102–112.

13. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, et al. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163–175. pmid:12150925

14. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, et al. (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Current biology: CB 14: 1296–1302. pmid:15268862

15. Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N (2010) Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochimica et biophysica acta 1804: 433–439. pmid:20005306

16. Bouvrette DJ, Sittaramane V, Heidel JR, Chandrasekhar A, Bryda EC (2010) Knockdown of bicaudal C in zebrafish (Danio rerio) causes cystic kidneys: a nonmammalian model of polycystic kidney disease. Comparative medicine 60: 96–106. pmid:20412683

17. Kraus MR, Clauin S, Pfister Y, Di Maio M, Ulinski T, et al. (2012) Two mutations in human BICC1 resulting in Wnt pathway hyperactivity associated with cystic renal dysplasia. Human mutation 33: 86–90. pmid:21922595

18. Maisonneuve C, Guilleret I, Vick P, Weber T, Andre P, et al. (2009) Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. Development 136: 3019–3030. pmid:19666828

19. Tran U, Pickney LM, Ozpolat BD, Wessely O (2007) Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros. Developmental biology 307: 152–164. pmid:17521625

20. Gamberi C, Lasko P (2012) The Bic-C family of developmental translational regulators. Comparative and functional genomics 2012: 141386. pmid:22611335

21. Mohler J, Wieschaus EF (1986) Dominant maternal-effect mutations of Drosophila melanogaster causing the production of double-abdomen embryos. Genetics 112: 803–822. pmid:3082713

22. Mahone M, Saffman EE, Lasko PF (1995) Localized Bicaudal-C RNA encodes a protein containing a KH domain, the RNA binding motif of FMR1. The EMBO journal 14: 2043–2055. pmid:7538070

23. Saffman EE, Styhler S, Rother K, Li W, Richard S, et al. (1998) Premature translation of oskar in oocytes lacking the RNA-binding protein bicaudal-C. Molecular and cellular biology 18: 4855–4862. pmid:9671494

24. Chicoine J, Benoit P, Gamberi C, Paliouras M, Simonelig M, et al. (2007) Bicaudal-C recruits CCR4-NOT deadenylase to target mRNAs and regulates oogenesis, cytoskeletal organization, and its own expression. Developmental cell 13: 691–704. pmid:17981137

25. Tran U, Zakin L, Schweickert A, Agrawal R, Doger R, et al. (2010) The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137: 1107–1116. pmid:20215348

26. Cogswell C, Price SJ, Hou X, Guay-Woodford LM, Flaherty L, et al. (2003) Positional cloning of jcpk/bpk locus of the mouse. Mammalian genome: official journal of the International Mammalian Genome Society 14: 242–249.

27. Yakulov TA, Yasunaga T, Ramachandran H, Engel C, Muller B, et al. (2015) Anks3 interacts with nephronophthisis proteins and is required for normal renal development. Kidney international.

28. Wolf MT, Hildebrandt F (2011) Nephronophthisis. Pediatric nephrology 26: 181–194. pmid:20652329

29. Wessing A, Eichelberg D (1969) [Electron microscopic studies of the renal tubules (malphigian tubules) in Drosophila melanogaster. I. Regional formation of tubules]. Zeitschrift fur Zellforschung und mikroskopische Anatomie 101: 285–322. pmid:4901547

30. Weavers H, Prieto-Sanchez S, Grawe F, Garcia-Lopez A, Artero R, et al. (2009) The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457: 322–326. pmid:18971929

31. Dow JA, Maddrell SH, Gortz A, Skaer NJ, Brogan S, et al. (1994) The malpighian tubules of Drosophila melanogaster: a novel phenotype for studies of fluid secretion and its control. The Journal of experimental biology 197: 421–428. pmid:7852912

32. O'Donnell MJ, Maddrell SH (1995) Fluid reabsorption and ion transport by the lower Malpighian tubules of adult female Drosophila. The Journal of experimental biology 198: 1647–1653. pmid:7636442

33. Wang J, Kean L, Yang J, Allan AK, Davies SA, et al. (2004) Function-informed transcriptome analysis of Drosophila renal tubule. Genome biology 5: R69. pmid:15345053

34. Dow JA, Romero MF (2010) Drosophila provides rapid modeling of renal development, function, and disease. American journal of physiology Renal physiology 299: F1237–1244. pmid:20926630

35. Bernstein J, Evan AP, Gardner KD Jr. (1987) Human cystic kidney diseases: epithelial hyperplasia in the pathogenesis of cysts and tumors. Pediatric nephrology 1: 393–396. pmid:3153306

36. Grantham JJ, Geiser JL, Evan AP (1987) Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney international 31: 1145–1152. pmid:3599654

37. Baert L (1978) Hereditary polycystic kidney disease (adult form): a microdissection study of two cases at an early stage of the disease. Kidney international 13: 519–525. pmid:713285

38. Harding MA, Gattone VH 2nd, Grantham JJ, Calvet JP (1992) Localization of overexpressed c-myc mRNA in polycystic kidneys of the cpk mouse. Kidney international 41: 317–325. pmid:1552705

39. Lanoix J, D'Agati V, Szabolcs M, Trudel M (1996) Dysregulation of cellular proliferation and apoptosis mediates human autosomal dominant polycystic kidney disease (ADPKD). Oncogene 13: 1153–1160. pmid:8808689

40. Trudel M, D'Agati V, Costantini F (1991) C-myc as an inducer of polycystic kidney disease in transgenic mice. Kidney international 39: 665–671. pmid:1646908

41. Trudel M (2015) C-Myc signalling in the genetic mechanism of polycystic kidney disease. In: Li X, editor. Polycystic Kidney Disease. Brisbane: Codon Publications. pp. 231–257.

42. Cowley BD Jr., Chadwick LJ, Grantham JJ, Calvet JP (1991) Elevated proto-oncogene expression in polycystic kidneys of the C57BL/6J (cpk) mouse. Journal of the American Society of Nephrology: JASN 1: 1048–1053. pmid:1912403

43. Kurbegovic A, Cote O, Couillard M, Ward CJ, Harris PC, et al. (2010) Pkd1 transgenic mice: adult model of polycystic kidney disease with extrarenal and renal phenotypes. Human molecular genetics 19: 1174–1189. pmid:20053665

44. Johnston LA, Prober DA, Edgar BA, Eisenman RN, Gallant P (1999) Drosophila myc regulates cellular growth during development. Cell 98: 779–790. pmid:10499795

45. Sozen MA, Armstrong JD, Yang M, Kaiser K, Dow JA (1997) Functional domains are specified to single-cell resolution in a Drosophila epithelium. Proceedings of the National Academy of Sciences of the United States of America 94: 5207–5212. pmid:9144216

46. Ni JQ, Liu LP, Binari R, Hardy R, Shim HS, et al. (2009) A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182: 1089–1100. pmid:19487563

47. Perkins LA, Shim H-S, Perrimon N ((2009.1.15)) Initial TRiP stock collection. http://flyrnai.org/TRiP-TTR.html

48. Distefano G, Boca M, Rowe I, Wodarczyk C, Ma L, et al. (2009) Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Molecular and cellular biology 29: 2359–2371. pmid:19255143

49. Becker JU, Saez AO, Zerres K, Witzke O, Hoyer PF, et al. (2010) The mTOR Pathway Is Activated in Human Autosomal-Recessive Polycystic Kidney Disease. Kidney & blood pressure research 33: 129–138.

50. Tao Y, Kim J, Schrier RW, Edelstein CL (2005) Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. Journal of the American Society of Nephrology: JASN 16: 46–51. pmid:15563559

51. Wahl PR, Serra AL, Le Hir M, Molle KD, Hall MN, et al. (2006) Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association—European Renal Association 21: 598–604.

52. Wu M, Wahl PR, Le Hir M, Wackerle-Men Y, Wuthrich RP, et al. (2007) Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kidney & blood pressure research 30: 253–259.

53. Shillingford JM, Piontek KB, Germino GG, Weimbs T (2010) Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. Journal of the American Society of Nephrology: JASN 21: 489–497. pmid:20075061

54. Torres VE, Boletta A, Chapman A, Gattone V, Pei Y, et al. (2010) Prospects for mTOR inhibitor use in patients with polycystic kidney disease and hamartomatous diseases. Clinical journal of the American Society of Nephrology: CJASN 5: 1312–1329. pmid:20498248

55. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, et al. (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell metabolism 11: 35–46. pmid:20074526

56. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, et al. (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460: 392–395. pmid:19587680

57. Medvedik O, Lamming DW, Kim KD, Sinclair DA (2007) MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS biology 5: e261. pmid:17914901

58. Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes & development 20: 174–184.

59. Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, et al. (1999) Drosophila S6 kinase: a regulator of cell size. Science 285: 2126–2129. pmid:10497130

60. Song X, Di Giovanni V, He N, Wang K, Ingram A, et al. (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Human molecular genetics 18: 2328–2343. pmid:19346236

61. Lian P, Li A, Li Y, Liu H, Liang D, et al. (2014) Loss of polycystin-1 inhibits Bicc1 expression during mouse development. PLoS One 9: e88816. pmid:24594709

62. Lieberthal W, Fuhro R, Andry C, Patel V, Levine JS (2006) Rapamycin delays but does not prevent recovery from acute renal failure: role of acquired tubular resistance. Transplantation 82: 17–22. pmid:16861936

63. Mitchell NC, Tchoubrieva EB, Chahal A, Woods S, Lee A, et al. (2015) S6 Kinase is essential for MYC-dependent rDNA transcription in Drosophila. Cellular signalling 27: 2045–2053. pmid:26215099

64. Kurbegovic A, Trudel M (2013) Progressive development of polycystic kidney disease in the mouse model expressing Pkd1 extracellular domain. Human molecular genetics 22: 2361–2375. pmid:23439951

65. Gallant P, Shiio Y, Cheng PF, Parkhurst SM, Eisenman RN (1996) Myc and Max homologs in Drosophila. Science 274: 1523–1527. pmid:8929412
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top