Login | Register

Modeling of Self-Assembled Quantum Dot Lasers

Title:

Modeling of Self-Assembled Quantum Dot Lasers

XIONG, YILING ORCID: https://orcid.org/0000-0001-7612-2547 (2019) Modeling of Self-Assembled Quantum Dot Lasers. PhD thesis, Concordia University.

[thumbnail of Xiong_PhD_S2020.pdf]
Preview
Text (application/pdf)
Xiong_PhD_S2020.pdf - Accepted Version
Available under License Spectrum Terms of Access.
11MB

Abstract

The study of active region structure for semiconductor lasers began in the 1960s. Most recently, quantum dot (QD) based lasers have attracted increasing attention. Modeling is crucial for the design of semiconductor QD-based lasers. Many attempts have been made to the macroscopic and, particularly, the microscopic modeling of III-V semiconductor QD as well as its applications during these decades. However, these proposed approaches use a very similar but outdated way to calculate the elastic strain field, referred to as one-step model, without rigorous consideration of the influence of the growth interruption in double-capping procedure, as the latter is currently used in epitaxial self-assembly for the control over the size of QDs. This thesis aims to contribute to the design improvements of QD-based laser applications through more accurate modeling.
In this thesis, we have focused on improving the modeling accuracy by elaborately analyzing the elastic strain and quantum confinement potential. By applying this accurate modeling methodology, not only the general semiconductor QD-based lasers but also the structures with an interlayer/sublayer or tightly coupled QD ensemble can be numerically modeled, giving rise to the possibility for predicting the behavior and even structural design of lasers, paving the way to potentially novel applications. The following work has been done in this thesis.
Firstly, we propose an accurate method of modeling a single QD, including a thorough so-called two-step elastic strain analysis, by considering the influence of growth interruption. A series of settings in terms of the three-dimensional (3D) geometry of QD and surrounding matrix are considered. The 3D confinement potential profile is found significantly different compared with the counterpart using the conventional one-step model. The electronic band structure is then calculated by using the strain-dependent eight-band k ∙ p method. The simulation results by using the two-step model are found in better agreement than one-step model in comparison with measurements. Moreover, the impact of the quaternary compositions of barrier material is, for the first time, systematically studied.
Secondly, the two-step model is further extended to three- and multi-step analysis to model the structures with additional GaP ultrathin layer above or beneath the QDs. It is found that, instead of preventing the As/P exchange, the main impact of GaP interlayer/sublayers is enhancing the quantum confinement and thereby blue-shifting the emission peak. Based on the ability to efficiently shifting the spectrum, a new vertically chirped multi-layer structure is proposed. By simultaneously optimizing the interlayer/sublayer thickness and double-capping settings, a total gain spectral bandwidth of 245.7 nm (i.e. 30% increase) is predicted, and peak wavelength is shortened to 1510 nm (i.e. 70 nm blueshift, in comparison to the case without interlayer/sublayer).
Thirdly, laterally and vertically coupled QDs are modeled to investigate a variety of coupling effects in the active region of lasers. In particular, multi-step strain analysis is applied to the modeling of closely stacked QDs to reproduce a more realistic unidirectional compressive strain accumulation, evidenced by the morphological observation of cross-section images obtained from measurements. A “quasi continuum band” formed by the mixing of bonding and antibonding states is found, giving rise to the possibility of emission at excited state (ES) instead of the ground state (GS). Using this feature, a new laser structure allowing two-state lasing under continuous wave (CW) electrical pumping is proposed for the first time and characterized through the simulation of spectral linewidth and relative intensity noise (RIN). The new structure exhibits lower (i.e. −130 versus −110 dBc/Hz) integrated RIN compared with the conventional counterpart under relatively high CW current injection.
Overall, this thesis sheds light on new device physics and provide guidelines to realize QD-based lasers with new features, and would be interesting to the scientific community.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Thesis (PhD)
Authors:XIONG, YILING
Institution:Concordia University
Degree Name:Ph. D.
Program:Electrical and Computer Engineering
Date:9 August 2019
Thesis Supervisor(s):ZHANG, JOHN XIUPU
Keywords:Quantum dots, semiconductor lasers, strain, electronic coupling, 8-band k·p modeling, finite element method, relative intensity noise
ID Code:986062
Deposited By: YILING XIONG
Deposited On:25 Jun 2020 18:48
Last Modified:25 Jun 2020 18:48

References:

[1] N. Basov, O. Krokhin, and Y. Popov, “Production of negative-temperature states in p-n junctions of degenerate semiconductors,” Sov. Phys. JETP, vol. 13, no. 6, pp. 1320–1321, 1961.
[2] H. Kroemer, “A proposed class of hetero-junction injection lasers,” in Proceedings of the IEEE, 1963.
[3] Z. I. Alferov and R. F. Kazarinov, “Semiconductor laser with electric pumping,” U.S.S.R Inventor’s Certificate No. 181737 (in Russian), 1963.
[4] P. YU and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties. Graduate Texts in Physics, Berlin, Germany: Springer Berlin Heidelberg, 2010.
[5] R. Dingle and C. H. Henry, “Quantum effects in heterostructure lasers,” US Patent #3,982,207, 1976.
[6] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett., vol. 40, no. 11, pp. 939–941, 1982.
[7] N. Kirstaedter, N. N. Ledentsov, and M. Grundmann, “Low threshold, large To injection laser emission from (InGa)As quantum dots,” Electron. Lett., vol. 30, no. 17, pp. 1416–1417, 1994.
[8] D. Huffaker, G. Park, Z. Zou, O. Shchekin, and D. Deppe, “Continuous-wave low-threshold performance of 1.3-μm InGaAs-GaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 3, pp. 452–461, 2000.
[9] M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron., vol. 22, no. 9, pp. 1915–1921, 1986.
[10] V. Ustinov, A. Zhokov, A. Zhukov, O. U. Press, A. Egorov, and N. Maleev, Quantum Dot Lasers. Oxford science publications, New York, USA: Oxford University Press, 2003.
[11] P. Blood, Quantum Confined Laser Devices: Optical Gain and Recombination in Semiconductors. New York, USA: Oxford University Press, 2015.
[12] A. Zhukov, M. Maksimov, and A. Kovsh, “Device characteristics of long-wavelength lasers based on self-organized quantum dots,” Semiconductors, vol. 46, no. 10, pp. 1225–1250, 2012.
[13] S. Anantathanasarna, R. Nötzel, and P. J. van Veldhoven, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett., vol. 89, no. 7, p. 073115, 2006.
[14] S. Anantathanasarn and R. Nötzel, “Wavelength-tunable (1.55‐μm region) InAs quantum dots in InGaAsP/InP (100) grown by metal-organic vapor-phase epitaxy,” J. Appl. Phys., vol. 98, no. 1, p. 013503, 2005.
[15] S. Fréchengues, N. Bertru, V. Drouot, B. Lambert, S. Robinet, S. Loualiche, D. Lacombe, and A. Ponchet, “Wavelength tuning of InAs quantum dots grown on (311)B InP,” Appl. Phys. Lett., vol. 74, no. 22, pp. 3356–3358, 1999.
[16] H. Saito, K. Nishi, and S. Sugou, “Ground-state lasing at room temperature in long-wavelength InAs quantum-dot lasers on inp(311)B substrates,” Appl. Phys. Lett., vol. 78, no. 3, pp. 267–269, 2001.
[17] J. Kotani, P. J. v. Veldhoven, T. d. Vries, B. Smalbrugge, E. A. J. M. Bente, M. K. Smit, and R. Nötzel, “First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state,” Electron. Lett., vol. 45, no. 25, pp. 1317–1318, 2009.
[18] D. Zhou, R. Piron, F. Grillot, and O. Dehaese, “Study of the characteristics of 1.55 μm quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett., 2008.
[19] N. Bertru, C. Paranthoen, O. Dehaese, A. Folliot, H.and Le Corre, R. Piron, F. Grillot, W. Lu, J. Even, G. Elias, C. Levallois, S. Loualiche, M. Bozkurt, J. Ulloa, P. Koenraad, and A. Ponchet, “QD laser on InP substrate for 1.55 μm emission and beyond,” in Proceedings of SPIE, Quantum Sensing and Nanophotonic Devices VII, vol. 7608, p. 76081B, 2010.
[20] S. White and M. Cataluna, “Unlocking spectral versatility from broadly-tunable quantum-dot lasers,” Photonics, vol. 2, no. 2, pp. 719–744, 2015.
[21] T. Müller, S. J, A. Krysa, J. Huwer, M. Felle, M. Anderson, R. Stevenson, J. Heffernan, D. Ritchie, and A. Shields, “A quantum light-emitting diode for the standard telecom window around 1,550 nm,” Nat. Commun., vol. 9, no. 1, p. 862, 2018.
[22] L. Tripathi, Y. He, u. Dusanowski, P. Wroński, C. Lu, C. Schneider, and S. Höfling, “Resonance fluorescence from an atomic-quantum-memory compatible single photon source based on GaAs droplet quantum dots,” Appl. Phys. Lett., vol. 113, no. 2, p. 021102, 2018.
[23] C. Ye, Tunable External Cavity Diode Lasers. Singapore: World Scientific, 2004.
[24] W. Kaiser, S. Deubert, J. P. Reithmaier, and A. Forchel, “Singlemode tapered quantum dot laser diodes with monolithically integrated feedback gratings,” Electron. Lett., vol. 43, no. 17, pp. 926–927, 2007.
[25] M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 185–187, 2010.
[26] M. Grundmann, “Feasibility of 5 Gbit/s wavelength division multiplexing using quantum dot lasers,” Appl. Phys. Lett., vol. 77, no. 26, pp. 4265–4267, 2000.
[27] H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 6, pp. 1173–1185, 2000.
[28] L. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett., vol. 41, no. 1, pp. 41–43, 2005.
[29] E. Rafailov, M. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics, vol. 1, no. 7, pp. 395–401, 2007.
[30] M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices,” Prog. Quantum Electron., vol. 38, no. 6, pp. 237–313, 2014.
[31] C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56μm,” Appl. Phys. Lett., vol. 88, no. 24, p. 241105, 2006.
[32] J. Renaudier, R. Brenot, B. Dagens, F. Lelarge, B. Rousseau, F. Poingt, O. Legouezigou, F. Pommereau, A. Accard, P. Gallion, and G. H. Duan, “45 GHz self-pulsation with narrow linewidth in quantum dot Fabry-Perot semiconductor lasers at 1.5 μm,” Electron. Lett., vol. 41, no. 18, pp. 1007–1008, 2005.
[33] A. E. Zhukov, A. R. Kovsh, and V. M. Ustinov, “Temperature dependence of the gain of lasers based on quantum-dot arrays with an inhomogeneously broadened density of states,” Semiconductors, vol. 33, no. 11, pp. 1260–1264, 1999.
[34] O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE Trans. Electron. Devices, vol. 50, pp. 1575–1581, 2003.
[35] P. Poole, K. Kaminska, P. Barrios, Z. Lu, and J. Liu, “Growth of InAs/InP-based quantum dots for 1.55μm laser applications,” J. Cryst. Growth, vol. 311, no. 6, pp. 1482–1486, 2009.
[36] C. Cornet, A. Schliwa, J. Even, F. Doré, C. Celebi, A. Létoublon, E. Macé, C. Paranthoën, A. Simon, P. M. Koenraad, N. Bertru, D. Bimberg, and S. Loualiche, “Electronic and optical properties of InAs/InP quantum dots on InP (100) and InP (311)B substrates: Theory and experiment,” Phys. Rev. B, vol. 74, p. 035312, Jul 2006.
[37] J. Ulloa, P. Koenraad, E. Gapihan, and A. Letoublon, “Double capping of molecular beam epitaxy grown InAs/InP quantum dots studied by cross-sectional scanning tunneling microscopy,” Appl. Phys. Lett., vol. 91, no. 7, p. 073106, 2007.
[38] G. Elias, A. Létoublon, R. Piron, and I. Alghoraibi, “Achievement of high density InAs/GaInAsP quantum dots on misoriented InP (001) substrates emitting at 1.55 μm,” Jpn. J. Appl. Phys., vol. 48, no. 7R, p. 070204, 2009.
[39] Z. Jiao, Z. Lu, J. Liu, P. J. Poole, P. J. Barrios, D. Poitras, G. Pakulski, J. Caballero, and X. Zhang, “Linewidth enhancement factor of InAs/InP quantum dot lasers around 1.5 μm,” Opt. Commun., vol. 285, no. 21–22, pp. 4372–4375, 2012.
[40] S. Luo, H. Ji, X. Yang, and T. Yang, “Impact of double-cap procedure on the characteristics of InAs/InGaAsP/InP quantum dots grown by metal-organic chemical vapor deposition,” J. Cryst. Growth, vol. 375, pp. 100–103, 2013.
[41] C. Paranthoen, N. Bertru, O. Dehaese, A. Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett., vol. 78, no. 12, p. 1751, 2001.
[42] C. Chia, S. Chua, J. Dong, and S. Teo, “Ultrawide band quantum dot light emitting device by postfabrication laser annealing,” Appl. Phys. Lett., vol. 90, no. 6, p. 061101, 2007.
[43] S. Haffouz, S. Raymond, Z. Lu, P. Barrios, D. Roy-Guay, X. Wu, J. Liu, D. Poitras, and Z. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: A new approach in controlling the bandwidth,” J. Cryst. Growth, vol. 311, no. 7, pp. 1803–1806, 2009.
[44] M. Z. M. Khan, T. K. Ng, C.-S. Lee, D. H. Anjum, D. Cha, P. Bhattacharya, and B. S. Ooi, “Distinct lasing operation from chirped InAs/InP quantum-dash laser,” IEEE Photonics Journal, vol. 5, no. 4, p. 1501308, 2013.
[45] F. Gao, S. Luo, H. M. Ji, S. T. Liu, F. Xu, Z. R. Lv, D. Lu, C. Ji, and T. Yang, “Ultrashort pulse and high power mode-locked laser with chirped InAs/InP quantum dot active layers,” IEEE Photon. Technol. Lett., vol. 28, no. 13, pp. 1481–1484, 2016.
[46] S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 58–60, 2006.
[47] M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron., vol. 43, no. 8, pp. 676–686, 2007.
[48] J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys., vol. 91, no. 10, pp. 6710–6716, 2002.
[49] D. C. Heo, J. D. Song, W. J. Choi, J. I. Lee, J. C. Jung, and I. K. Han, “High power broadband InGaAs/GaAs quantum dot superluminescent diodes,” Electron. Lett., vol. 39, no. 11, pp. 863–865, 2003.
[50] Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 27–29, 2004.
[51] R. Nötzel, S. Anantathanasarn, and R. P. J. van Veldhoven, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: Wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys., vol. 45, no. 8S, pp. 6544–6549, 2006.
[52] Q. Gong, R. Nötzel, V. P. Veldhoven, and J. Wolter, “InAs/InP quantum dots emitting in the wavelength region by inserting ultrathin GaAs and GaP interlayers,” J. Cryst. Growth, vol. 85, no. 8, pp. 1404–1406, 2005.
[53] E. S. Semenova and I. Kulkova, “Metal organic vapor-phase epitaxy of InAs/InGaAsP quantum dots for laser applications at 1.5 μm,” Appl. Phys. Lett., vol. 99, no. 10, p. 101106, 2011.
[54] S. Yoon, Y. Moon, T.-W. Lee, E. Yoon, and Y. Kim, “Effects of As/P exchange reaction on the formation of InAs/InP quantum dots,” Appl. Phys. Lett., vol. 74, no. 14, pp. 2029–2031, 1999.
[55] S. Shetty, S. Adhikary, B. Tongbram, A. Ahmad, H. Ghadi, and S. Chakrabarti, “The optical properties of strain-coupled InAs/GaAs quantum-dot heterostructures with varying thicknesses of GaAs and InGaAs spacer layers,” J. Lumin., vol. 158, pp. 231–235, 2015.
[56] B. Tongbram, N. Sehara, J. Singhal, P. D. Panda, and S. Chakrabarti, “A detailed investigation of strain patterning effect on bilayer InAs/GaAs quantum dot with varying GaAs barrier thickness,” in SPIE Proc. 9758, p. 975802, 2016.
[57] H. Heidemeyer, S. Kiravittaya, C. Müller, J. NY, and O. Schmidt, “Closely stacked InAs/GaAs quantum dots grown at low growth rate,” Appl. Phys. Lett., vol. 80, no. 9, pp. 1544–1546, 2002.
[58] M. O. Lipinski, H. Schuler, O. G. Schmidt, K. Eberl, and N. Y. Jin-Phillipp, “Strain-induced material intermixing of InAs quantum dots in GaAs,” Appl. Phys. Lett., vol. 77, no. 12, pp. 1789–1791, 2000.
[59] W. Chang, W. Chen, A. Chou, T. Hsu, P. Chen, Z. Pei, and L. Lai, “Effects of spacer thickness on optical properties of stacked Ge/Si quantum dots grown by chemical vapor deposition,” J. Appl. Phys., vol. 93, no. 9, pp. 4999–5002, 2003.
[60] E. Petitprez and E. Marega, “On the origin of the optical emission peak shifts in QD superlattices,” Phys. Status Solidi B, vol. 232, no. 1, pp. 164–168, 2002.
[61] B. Ilahi, L. Sfaxi, F. Hassen, B. Salem, and B. G. C, “Optimizing the spacer layer thickness of vertically stacked InAs/GaAs quantum dots,” Mater. Sci. Eng. C., vol. 26, no. 2–3, pp. 374–377, 2006.
[62] J. Tatebayashi, N. Nuntawong, P. Wong, Y. Xin, L. Lester, and D. Huffaker, “Strain compensation technique in self-assembled InAs/GaAs quantum dots for applications to photonic devices,” J. Phys. D: Appl. Phys., vol. 42, no. 7, p. 073002, 2009.
[63] D. Panda, A. Ahmad, H. Ghadi, S. Adhikary, B. Tongbram, and S. Chakrabarti, “Evidence of quantum dot size uniformity in strain-coupled multilayered In(Ga)As/GaAs QDs grown with constant overgrowth percentage,” J. Lumin., vol. 192, pp. 562–566, 2017.
[64] Z. Wasilewski, S. Fafard, and M. JP, “Size and shape engineering of vertically stacked self-assembled quantum dots,” J. Cryst. Growth, vol. 201–202, pp. 1131–1135, 1999.
[65] J. Tatebayashi, N. Nuntawong, Y. Xin, P. Wong, S. Huang, C. Hains, L. Lester, and D. Huffaker, “Ground-state lasing of stacked InAs/GaAs quantum dots with GaP strain-compensation layers grown by metal organic chemical vapor deposition,” Appl. Phys. Lett., vol. 88, no. 22, p. 221107, 2006.
[66] P. J. Simmonds, M. Sun, R. B. Laghumavarapu, B. Liang, A. G. Norman, J.-W. Luo, and D. L. Huffaker, “Improved quantum dot stacking for intermediate band solar cells using strain compensation,” Nanotechnology, vol. 25, no. 44, p. 445402, 2014.
[67] G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Jr., “Vertically aligned and electronically coupled growth induced InAs islands in GaAs,” Phys. Rev. Lett., vol. 76, pp. 952–955, 1996.
[68] R. Heitz, A. Kalburge, Q. Xie, M. Grundmann, P. Chen, A. Hoffmann, A. Madhukar, and D. Bimberg, “Excited states and energy relaxation in stacked InAs/GaAs quantum dots,” Phys. Rev. B, vol. 57, pp. 9050–9060, 1998.
[69] N. Ledentsov, V. Shchukin, M. Grundmann, N. Kirstaedter, J. Böhrer, O. Schmidt, D. Bimberg, V. Ustinov, Y. A. Egorov, A. Zhukov, P. Kop’ev, S. Zaitsev, Y. N. Gordeev, Z. I. Alferov, A. Borovkov, A. Kosogov, S. Ruvimov, P. Werner, U. Gösele, and J. Heydenreich, “Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth,” Phys. Rev. B, vol. 54, no. 12, pp. 8743–8750, 1996.
[70] G. Bester, J. Shumway, and A. Zunger, “Theory of excitonic spectra and entanglement engineering in dot molecules,” Phys. Rev. Lett., vol. 93, no. 4, p. 047401, 2004.
[71] E. Biolatti, R. C. Iotti, P. Zanardi, and F. Rossi, “Quantum information processing with semiconductor macroatoms,” Phys. Rev. Lett., vol. 85, no. 26, p. 5647, 2000.
[72] S. Anantathanasarn, R. Nötzel, P. van Veldhoven, F. van Otten, T. Eijkemans, Y. Barbarin, T. de Vries, E. Smalbrugge, E. Geluk, E. Bente, Y. Oei, M. Smit, and J. Wolter, “Stacking, polarization control, and lasing of wavelength tunable (1.55μm region) InAs/InGaAsP/InP (100) quantum dots,” J. Cryst. Growth, vol. 298, pp. 553–557, 2007.
[73] V. Tasco, M. Usman, M. D. Giorgi, and A. Passaseo, “Tuning of polarization sensitivity in closely stacked trilayer InAs/GaAs quantum dots induced by overgrowth dynamics,” Nanotechnology, vol. 25, no. 5, p. 055207, 2014.
[74] M. Gong, K. Duan, C. Li, R. Magri, G. Narvaez, and L. He, “Electronic structure of self-assembled InAs/InP quantum dots: Comparison with self-assembled InAs/GaAs quantum dots,” Phys. Rev. B, vol. 77, no. 4, p. 045326, 2008.
[75] M. Gong, W. Zhang, C. G. Guo, and L. He, “Atomistic pseudopotential theory of optical properties of exciton complexes in InAs/InP quantum dots,” Appl. Phys. Lett., vol. 99, no. 23, p. 231106, 2011.
[76] M. Zieliński, “Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots,” J. Phys.: Condens. Matter, vol. 25, no. 46, p. 465301, 2013.
[77] M. Holm, M.-E. Pistol, and C. Pryor, “Calculations of the electronic structure of strained InAs quantum dots in InP,” J. Appl. Phys., vol. 92, no. 2, pp. 932–936, 2002.
[78] O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,” Phys. Rev. B, vol. 59, no. 8, pp. 5688–5701, 1999.
[79] J. Even, F. Doré, C. Cornet, and L. Pedesseau, “Semianalytical model for simulation of electronic properties of narrow-gap strained semiconductor quantum nanostructures,” Phys. Rev. B, vol. 77, no. 8, p. 085305, 2008.
[80] H. Ilatikhameneh, T. Ameen, and G. Klimeck, “Universal behavior of atomistic strain in self-assembled quantum dots,” IEEE J. Quantum Electron., vol. 52, no. 7, p. 7000308, 2016.
[81] J. Saha, D. Panda, D. Das, V. Chavan, and S. Chakrabarti, “Enhanced luminescence and optical performance through strain minimization in self-assembled InAs QDs using dual quaternary-ternary/ternary-quaternary capping,” J. Lumin., vol. 197, pp. 297–303, 2018.
[82] C. Pryor, “Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations,” Phys. Rev. B, vol. 57, pp. 7190–7195, 1998.
[83] M. Tadić, F. Peeters, K. Janssens, M. Korkusiński, and P. Hawrylak, “Strain and band edges in single and coupled cylindrical InAs/GaAs and InP/InGaP self-assembled quantum dots,” J. Appl. Phys., vol. 92, no. 10, p. 5819, 2002.
[84] M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure,” Phys. Rev. B, vol. 52, pp. 11969–11981, 1995.
[85] C. Pryor, M.-E. Pistol, and L. Samuelson, “Electronic structure of strained InP/Ga0.51In0.49P quantum dots,” Phys. Rev. B, vol. 56, pp. 10404–10411, 1997.
[86] C. E. Pryor and M.-E. Pistol, “Band-edge diagrams for strained III-V semiconductor quantum wells, wires, and dots,” Phys. Rev. B, vol. 72, p. 205311, 2005.
[87] M. Zieliński, K. M., and P. Hawrylak, “Atomistic tight-binding theory of multiexciton complexes in a self-assembled InAs quantum dot,” Phys. Rev. B, vol. 81, no. 8, p. 085301, 2010.
[88] A. Lanacer, N. Shtinkov, P. Desjardins, R. Masut, and R. Leonelli, “Optical emission from InAs/InP self-assembled quantum dots: evidence for As/P intermixing,” Semicond. Sci. Tech., vol. 22, no. 12, p. 1282, 2007.
[89] S. Lee, O. Lazarenkova, P. Allmen, F. Oyafuso, and G. Klimeck, “Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots,” Phys. Rev. B, vol. 70, no. 12, p. 125307, 2004.
[90] E. Goldmann, From Structure to Spectra: Tight-Binding Theory of InGaAs Quantum Dots. PhD thesis, Dept. Phys. Electron., Universität Bremen, Bremen, Germany, 2014.
[91] J. C. Phillips, “Energy-band interpolation scheme based on a pseudopotential,” Phys. Rev., vol. 112, pp. 685–695, 1958.
[92] G. Bester, “Electronic excitations in nanostructures: an empirical pseudopotential based approach,” J. Phys. Condens. Matter, vol. 21, no. 2, p. 023202, 2009.
[93] M. Sanaee, A. Zarifkar, and M. Sheikhi, “Frequency noise analysis of 1.55 μm indium arsenide/indium phosphide quantum dot lasers: impact of non-linear gain and direct carrier transition,” IET Optoelectronics, vol. 10, no. 4, pp. 134–141, 2016.
[94] F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs–InP (113) B Quantum-Dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron., vol. 45, no. 7, pp. 872–878, 2009.
[95] M. Gioannini and I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron., vol. 43, no. 10, pp. 941–949, 2007.
[96] M. Sugawara, K. Mukai, Y. Nakata, and H. Ishikawa, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B, vol. 61, no. 11, pp. 7595–7603, 2000.
[97] Z. Jiao, R. Zhang, X. Zhang, and J. Liu, “Modeling of single-section quantum dot mode-locked lasers: Impact of group velocity dispersion and self phase modulation,” IEEE J. Quantum Electron., vol. 49, no. 12, pp. 1008–1015, 2013.
[98] P. Bardella, L. L. Columbo, and M. Gioannini, “Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study,” Opt. Express, vol. 25, no. 21, pp. 26234–26252, 2017.
[99] M. Gioannini, P. Bardella, and I. Montrosset, “Time-Domain Traveling-Wave analysis of the multimode dynamics of quantum dot Fabry-Perot lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 6, pp. 698–708, 2015.
[100] M. Rossetti, P. Bardella, and I. Montrosset, “Time-Domain Travelling-Wave model for quantum dot passively Mode-Locked lasers,” IEEE J. Quantum Electron., vol. 47, no. 2, pp. 139–150, 2011.
[101] M. Rossetti, P. Bardella, and I. Montrosset, “Modeling passive Mode-Locking in quantum dot lasers: A comparison between a Finite-Difference Traveling-Wave model and a delayed differential equation approach,” IEEE J. Quantum Electron., vol. 47, no. 5, pp. 569–576, 2011.
[102] C. Wang, F. Grillot, and J. Even, “Modelling the gain compression effects on semiconductor quantum-dot laser through a new modulation transfer function,” in IEEE Photonics Conference 2012, pp. 46–47, Sept 2012.
[103] K. Kayhani and E. Rajaei, “Investigation of dynamical characteristics and modulation response function of InAs/InP (311)B quantum dot lasers with different QD size,” Photonics Nanostructures, vol. 25, pp. 1–8, 2017.
[104] J. S. Kim, M. Kawabe, and N. Koguchi, “Ordering of high-quality InAs quantum dots on defect-free nanoholes,” Appl. Phys. Lett., vol. 88, no. 7, p. 072107, 2006.
[105] N. Kleemans, J. van Bree, M. Bozkurt, P. J. van Veldhoven, P. A. Nouwens, R. Nötzel, A. Y. Silov, P. M. Koenraad, and M. E. Flatté, “Size-dependent exciton g factor in self-assembled InAs/InP quantum dots,” Phys. Rev. B, vol. 79, p. 045311, 2009.
[106] Y. Akanuma, I. Yamakawa, Y. Sakuma, T. Usuki, and A. Nakamura, “Scanning tunneling microscopy study of interfacial structure of InAs quantum dots on InP(001) grown by a double-cap method,” Appl. Phys. Lett., vol. 90, no. 9, p. 093112, 2007.
[107] H. Eisele, A. Lenz, R. Heitz, R. Timm, M. Dähne, Y. Temko, T. Suzuki, and K. Jacobi, “Change of InAs/GaAs quantum dot shape and composition during capping,” J. Appl. Phys., vol. 104, no. 12, p. 124301, 2008.
[108] L. Ouattara, A. Mikkelsen, E. Lundgren, M. Borgström, L. Samuelson, and W. Seifert, “Stacked InAs quantum dots in InP studied by cross-sectional scanning tunnelling microscopy,” Nanotechnology, vol. 15, no. 12, pp. 1701–1707, 2004.
[109] B. Grandidier, Y. M. Niquet, B. Legrand, J. P. Nys, C. Priester, D. Stiévenard, J. M. Gérard, and V. Thierry-Mieg, “Imaging the wave-function amplitudes in cleaved semiconductor quantum boxes,” Phys. Rev. Lett., vol. 85, pp. 1068–1071, Jul 2000.
[110] T. Maltezopoulos, A. Bolz, C. Meyer, C. Heyn, W. Hansen, M. Morgenstern, and R. Wiesendanger, “Wave-function mapping of InAs quantum dots by scanning tunneling spectroscopy,” Phys. Rev. Lett., vol. 91, no. 19, p. 196804, 2003.
[111] S. Kadkhodazadeh, E. Semenova, K. Yvind, and D. R.E., “Investigating the chemical and morphological evolution of GaAs capped InAs/InP quantum dots emitting at 1.5μm using aberration-corrected scanning transmission electron microscopy,” J. Cryst. Growth, vol. 329, no. 1, pp. 57–61, 2011.
[112] T. Inoue, T. Kita, O. Wada, M. Konno, T. Yaguchi, and T. Kamino, “Electron tomography of embedded semiconductor quantum dot,” Appl. Phys. Lett., vol. 92, no. 3, p. 031902, 2008.
[113] V. A. Shchukin and D. Bimberg, “Spontaneous ordering of nanostructures on crystal surfaces,” Rev. Mod. Phys., vol. 71, pp. 1125–1171, 1999.
[114] A. Romanov, G. Beltz, W. Fischer, P. Petroff, and J. Speck, “Elastic fields of quantum dots in subsurface layers,” J. Appl. Phys., vol. 89, no. 8, pp. 4523–4531, 2001.
[115] M. Kuo, T. Lin, K. Hong, B. Liao, H. Lee, and C. Yu, “Two-step strain analysis of self-assembled InAs/GaAs quantum dots,” Semicond. Sci. Technol., vol. 21, no. 5, pp. 626–632, 2006.
[116] J. Sólyom, Fundamentals of the Physics of Solids. New York, USA: springer, 2007.
[117] E. O’Reilly, Quantum Theory of Solids. London, UK: CRC Press, 2002.
[118] J. C. Slater and G. F. Koster, “Simplified LCAO method for the periodic potential problem,” Phys. Rev., vol. 94, pp. 1498–1524, Jun 1954.
[119] D. J. Chadi and M. L. Cohen, “Analytic expression for the electronic charge density distribution in diamond-structure crystals,” Phys. Status Solidi B, vol. 62, no. 1, pp. 235–248.
[120] F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, “Single-electron charging in double and triple quantum dots with tunable coupling,” Phys. Rev. Lett., vol. 75, pp. 705–708, 1995.
[121] R. Nötzel and K. H. Ploog, “Direct synthesis of semiconductor quantum-wire and quantum-dot structures,” Adv. Mater., vol. 5, no. 1, pp. 22–29.
[122] L. Spanhel, M. Haase, H. Weller, and A. Henglein, “Photochemistry of colloidal semiconductors. 20. surface modification and stability of strong luminescing CdS particles,” J. Am. Chem. Soc., vol. 109, pp. 5649–5655, 1987.
[123] V. Colvin, A. Goldstein, and A. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers,” J. Am. Chem. Soc., vol. 114, no. 13, 1992.
[124] H. Lee, P. H. Holloway, and H. Yang, “Synthesis and characterization of colloidal ternary ZnCdSe semiconductor nanorods,” J. Chem. Phys., vol. 125, no. 16, p. 164711, 2006.
[125] S. Kadkhodazadeh, “High resolution STEM of quantum dots and quantum wires,” Micron, 2013.
[126] J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron., vol. 55, no. 2, pp. 1–11, 2019.
[127] Y. Shirasaki, G. Supran, M. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics, vol. 7, no. 1, pp. 13–23, 2013.
[128] C. Pryor, J. Kim, L. Wang, A. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots,” J. Appl. Phys., vol. 83, no. 5, pp. 2548–2554, 1998.
[129] M. Tadić, F. M. Peeters, and K. L. Janssens, “Effect of isotropic versus anisotropic elasticity on the electronic structure of cylindrical InP/Ga0.51In0.49P self-assembled quantum dots,” Phys. Rev. B, vol. 65, p. 165333, 2002.
[130] J. L. Birman, “Theory of the piezoelectric effect in the zincblende structure,” Phys. Rev., vol. 111, pp. 1510–1514, Sep 1958.
[131] A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As/GaAs quantum dots,” Phys. Rev. B, vol. 76, no. 20, p. 205324, 2007.
[132] G. Bir and G. Pikus, Symmetry and Strain-Induced Effects in Semiconductors. New York, USA: Wiley, 1974.
[133] I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, no. 11, pp. 5815–5875, 2001.
[134] S. Chuang, Physics of Photonic Devices. Wiley Series in Pure and Applied Optics, New Jersey, USA: Wiley, 2012.
[135] D. L. Smith and C. Mailhiot, “Theory of semiconductor superlattice electronic structure,” Rev. Mod. Phys., vol. 62, pp. 173–234, 1990.
[136] G. Bester and A. Zunger, “Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelectric effects,” Phys. Rev. B, vol. 71, p. 045318, 2005.
[137] G. Bester, X. Wu, D. Vanderbilt, and A. Zunger, “Importance of second-order piezoelectric effects in zinc-blende semiconductors,” Phys. Rev. Lett., vol. 96, no. 18, p. 187602, 2006.
[138] M. A. Migliorato, D. Powell, A. G. Cullis, T. Hammerschmidt, and G. P. Srivastava, “Composition and strain dependence of the piezoelectric coefficients in InxGa1-xAs alloys,” Phys. Rev. B, vol. 74, p. 245332, 2006.
[139] F. Klotz, Spin Effects in Self-Assembled Semiconductor Quantum Dots. PhD thesis, Dept. Phys., Technische Universität München, München, Germany, 2012.
[140] J. M. Luttinger, “Quantum theory of cyclotron resonance in semiconductors: General theory,” Phys. Rev., vol. 102, pp. 1030–1041, May 1956.
[141] B. A. Foreman, “Valence-band mixing in first-principles envelope-function theory,” Phys. Rev. B, vol. 76, p. 045327, 2007.
[142] O. Stier, Electronic and Optical Properties of Quantum Dots and Wires. PhD thesis, Technische Universität Berlin, Berlin, Germany, 2001.
[143] P. Löwdin, “A note on the quantum‐mechanical perturbation theory,” J. Chem. Phys., vol. 19, no. 11, pp. 1396–1401, 1951.
[144] E. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids, vol. 1, pp. 249–261, 1957.
[145] S. Steiger, NEMO5 User Manual. Purdue University, West Lafayette, IN, USA, 2012.
[146] M. Gayer, NanoFEM Platform - Documentation Draft, 2009.
[147] COMSOL, Inc., Introduction to COMSOL Multiphysics, version 5.4. Burlington, MA, USA, 2018.
[148] L. Vegard, “Die Konstitution der Mischkristalle und die Raumfüllung der Atome,” Zeitschrift fur Physik, vol. 5, pp. 17–26, 1921.
[149] A. Schliwa, Electronic Properties of Self-Organized Quantum Dots. PhD thesis, Dept. Math. Nat. Sci., Technische Universität Berlin, Berlin, Germany, 2007.
[150] L. Coldren, S. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits. Wiley Series in Microwave and Optical Engineering, New Jersey, USA: Wiley, 2012.
[151] I. O’Driscoll, P. Blood, and P. M. Smowton, “Random population of quantum dots in InAs–GaAs laser structures,” IEEE J. Quantum Electron., vol. 46, no. 4, pp. 525–532, 2010.
[152] C. H. Henry, R. A. Logan, and F. R. Merritt, “Measurement of gain and absorption spectra in AlGaAs buried heterostructure lasers,” J. Appl. Phys., vol. 51, no. 6, pp. 3042–3050, 1980.
[153] K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55-μm InAs-InP (113)B Quantum-Dot lasers,” IEEE J. Quantum Electron., vol. 43, no. 9, pp. 810–816, 2007.
[154] C. Wang, F. Grillot, and J. Even, “Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers,” IEEE J. Quantum Electron., vol. 48, no. 9, pp. 1144–1150, 2012.
[155] A. Markus, J. Chen, C. Paranthoën, A. Fiore, C. Platz, and G. O, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett., vol. 82, no. 12, pp. 1818–1820, 2003.
[156] E. Viktorov, P. Mandel, Y. Tanguy, J. Houlihan, and G. Huyet, “Electron-hole asymmetry and two-state lasing in quantum dot lasers,” Appl. Phys. Lett., vol. 87, no. 5, p. 053113, 2005.
[157] C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 μm,” IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 3, pp. 749–756, 2009.
[158] M. Gioannini, “Ground-state power quenching in two-state lasing quantum dot lasers,” J. Appl. Phys., vol. 111, no. 4, p. 043108, 2012.
[159] V. Korenev, A. Savelyev, A. Zhukov, A. Omelchenko, and M. Maximov, “Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers,” Semiconductors, vol. 47, no. 10, pp. 1397–1404, 2013.
[160] A. Röhm, Modes of Operation of QD Lasers, pp. 28–36. Wiesbaden: Springer Fachmedien Wiesbaden, 2015.
[161] W. Pauli, “Über den zusammenhang des abschlusses der elektronengruppen im atom mit der komplexstruktur der spektren,” Zeitschrift für Physik, vol. 31, no. 1, pp. 765–783, 1925.
[162] Optiwave System, Inc., Introduction to OptiBPM. Ottawa, ON, Canada.
[163] Photon Design Ltd, Introduction to FIMMPROP: A bi-directional optical propagation tool. Oxford, UK.
[164] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun., vol. 181, pp. 687–702, 2010.
[165] L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron., vol. 30, no. 6, pp. 1389–1395, 1994.
[166] J. Mulet and J. Mork, “Analysis of timing jitter in external-cavity mode-locked semiconductor lasers,” IEEE J. Quantum Electron., vol. 42, no. 3, pp. 249–256, 2006.
[167] W. Bogaerts, M. Fiers, and P. Dumon, “Design challenges in silicon photonics,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 4, pp. 1–8, 2014.
[168] J. Javaloyes and S. Balle, “Multimode dynamics in bidirectional laser cavities by folding space into time delay,” Opt. Express, vol. 20, no. 8, p. 8496, 2012.
[169] D. Puris, S. C, K. Lüdge, N. Majer, E. Schöll, and K. Petermann, “Time-domain model of quantum-dot semiconductor optical amplifiers for wideband optical signals,” Opt. Express, vol. 20, no. 24, p. 27265, 2012.
[170] M. Gioannini and M. Rossetti, “Time-domain traveling wave model of quantum dot DFB lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 5, pp. 1318–1326, 2011.
[171] Lumerical Solutions, Inc, FDTD solution: Refernce guide, release 7.5. Vancouver, BC, Canada, 2011.
[172] MathWorks, Inc., PDF Documentation for MATLAB. Natick, Massachusetts, USA.
[173] P. Poole, R. Williams, J. Lefebvre, and S. Moisa, “Using As/P exchange processes to modify InAs/InP quantum dots,” J. Cryst. Growth, vol. 257, no. 1–2, pp. 89–96, 2003.
[174] D. Cooper, J.-L. Rouviere, A. Béché, S. Kadkhodazadeh, E. Semenova, K. Yvind, and R. Dunin-Borkowski, “Quantitative strain mapping of InAs/InP quantum dots with 1 nm spatial resolution using dark field electron holography,” Appl. Phys. Lett., vol. 99, no. 26, p. 261911, 2011.
[175] S. Shusterman, A. Raizman, A. Sher, A. Schwarzman, O. Azriel, A. Boag, Y. Rosenwaks, P. Galindo, and Y. Paltiel, “Two-dimensional imaging of III-V quantum dots confinement potential,” Europhys. Lett., vol. 88, no. 6, p. 66003, 2010.
[176] M. Bayer, G. Ortner, and O. Stern, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B, vol. 65, no. 19, p. 195315, 2002.
[177] R. Singh and G. Bester, “Effects of atomic ordering on the electronic and optical properties of self-assembled InxGa1-xAs/GaAs semiconductor quantum dots,” Phys. Rev. B, vol. 84, no. 24, p. 241402, 2011.
[178] R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. Pohl, and D. Bimberg, “Size-Dependent Fine-Structure splitting in Self-Organized InAs/GaAs quantum dots,” Phys. Rev. Lett., vol. 95, no. 25, p. 257402, 2005.
[179] D. Press, T. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature, vol. 456, no. 7219, pp. 218–221, 2008.
[180] Warburton and J. Richard, “Single spins in self-assembled quantum dots,” Nat. Mater., vol. 12, no. 6, pp. 483–493, 2013.
[181] J. Liu, Z. Lu, S. Raymond, P. J. Poole, and P. J. Barrios, “Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser,” Opt. Lett., vol. 33, no. 15, pp. 1702–1704, 2008.
[182] S. Li, Q. Gong, and C. Cao, “Multicolor InAs/InP (100) quantum dot laser,” Chin. Phys. Lett., vol. 28, no. 11, p. 114212, 2011.
[183] S. Li, Q. Gong, X. Wang, C. Cao, Z. Zhou, and H. Wang, “Cavity length and stripe width dependent lasing characteristics of InAs/InP (100) quantum dot lasers,” Infrared Phys. Technol., vol. 75, pp. 51–55, 2016.
[184] Z. Lin, G. Yuan, and Z. Wang, “Analysis of ground state spectral splitting of quantum dot lasers aimed for tunable terahertz generation,” J. Opt. Soc. Am. B: Opt. Phys., vol. 33, no. 10, pp. 2114–2119, 2016.
[185] P. Vullum, M. Nord, M. Vatanparast, S. Thomassen, C. Boothroyd, R. Holmestad, B. Fimland, and T. Reenaas, “Quantitative strain analysis of InAs/GaAs quantum dot materials,” Sci. Reports, vol. 7, p. 45376, 2017.
[186] S. Lee, J. Kim, S. Noh, J. Choe, and K. Lee, “Evolution of structural and optical characteristics in InAs quantum dots capped by GaAs layers comparable to dot height,” J. Cryst. Growth, vol. 284, no. 1-2, pp. 39–46, 2005.
[187] J. Persson, U. Hakanson, J. M. Johansson, L. Samuelson, and E. M. Pistol, “Strain effects on individual quantum dots: Dependence of cap layer thickness,” Phys. Rev. B, vol. 72, no. 8, p. 085302, 2005.
[188] C. Mesaritakis, C. Simos, H. Simos, and S. Mikroulis, “Pulse width narrowing due to dual ground state emission in quantum dot passively mode locked lasers,” Appl. Phys. Lett., vol. 96, no. 21, p. 211110, 2010.
[189] D. Barettin, M. Auf der Maur, R. De Angelis, P. Prosposito, M. Casalboni, and A. Pecchia, “Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules,” J. Appl. Phys., vol. 117, no. 9, p. 094306, 2015.
[190] X. Chen, Y. Xiong, and X. Zhang, “Interaction of self-assembled InAs/InGaAsP/InP (001) quantum dots,” Opt. Commun., vol. 429, pp. 18 – 28, 2018.
[191] M. Korkusiński and P. Hawrylak, “Electronic structure of vertically stacked self-assembled quantum disks,” Phys. Rev. B, vol. 63, p. 195311, Apr 2001.
[192] H. Shin, W. Lee, and Y.-H. Yoo, “Comparison of strain fields in truncated and un-truncated quantum dots in stacked InAs/GaAs nanostructures with varying stacking periods,” J. Phys.: Condens. Matter, vol. 15, pp. 3689–3699, may 2003.
[193] M. Tadić and F. M. Peeters, “Binding of electrons, holes, and excitons in symmetric strained InP/In0.49Ga0.51P triple quantum-dot molecules,” Phys. Rev. B, vol. 70, p. 195302, Nov 2004.
[194] W. Jaskólski, M. Zieliński, G. W. Bryant, and J. Aizpurua, “Strain effects on the electronic structure of strongly coupled self-assembled InAs/GaAs quantum dots: Tight-binding approach,” Phys. Rev. B, vol. 74, p. 195339, 2006.
[195] T. Saito, H. Ebe, Y. Arakawa, T. Kakitsuka, and M. Sugawara, “Optical polarization in columnar InAs/GaAs quantum dots: 8-band k·p calculations,” Phys. Rev. B, vol. 77, p. 195318, May 2008.
[196] M. Usman, T. Inoue, Y. Harda, G. Klimeck, and T. Kita, “Experimental and atomistic theoretical study of degree of polarization from multilayer InAs/GaAs quantum dot stacks,” Phys. Rev. B, vol. 84, p. 115321, Sep 2011.
[197] H. Eisele, O. Flebbe, T. Kalka, C. Preinesberger, F. Heinrichsdorff, A. Krost, D. Bimberg, and M. Dähne, “Cross-sectional scanning-tunneling microscopy of stacked InAs quantum dots,” Appl. Phys. Lett., vol. 75, no. 1, pp. 106–108, 1999.
[198] Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, “Vertically Self-Organized InAs quantum box islands on GaAs(100),” Phys. Rev. Lett., vol. 75, no. 13, pp. 2542–2545, 1995.
[199] S. Adhikary, N. Halder, S. Chakrabarti, S. Majumdar, S. Ray, M. Herrera, M. Bonds, and N. Browning, “Investigation of strain in self-assembled multilayer InAs/GaAs quantum dot heterostructures,” J. Cryst. Growth., vol. 312, no. 5, pp. 724–729, 2010.
[200] M. Sabaeian and M. Shahzadeh, “Self-assembled strained pyramid-shaped InAs/GaAs quantum dots: The effects of wetting layer thickness on discrete and quasi-continuum levels,” Physica E: Low.-Dimens. Syst. Nanostruct., vol. 61, pp. 62–68, 2014.
[201] S.-S. Li, K. Chang, and J.-B. Xia, “Effective-mass theory for hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots,” Phys. Rev. B, vol. 71, p. 155301, Apr 2005.
[202] S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff, and J. L. Merz, “State filling and time-resolved photoluminescence of excited states in InxGa1-xAs/GaAs self-assembled quantum dots,” Phys. Rev. B, vol. 54, pp. 11548–11554, 1996.
[203] M. Syperek, J. Andrzejewski, E. Rogowicz, J. Misiewicz, S. Bauer, V. Sichkovskyi, J. Reithmaier, and G. Sek, “Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μm,” Appl. Phys. Lett., vol. 112, no. 22, p. 221901, 2018.
[204] H. Shin, E. Yoon, K.-S. Hong, W. Lee, and Y.-H. Yoo, “Blueshifts of emission energy from InAs quantum dots in GaAs matrix due to narrowed interdot spacing: A token of the integrity of a nanostructure,” Appl. Phys. A: Mater. Sci. Process, vol. 81, pp. 715–719, Sep 2005.
[205] P. Howe, E. C. Le Ru, E. Clarke, R. Murray, and T. S. Jones, “Quantification of segregation and strain effects in InAs/GaAs quantum dot growth,” J. Appl. Phys., vol. 98, no. 11, p. 113511, 2005.
[206] J. He, Y. C. Zhang, B. Xu, and Z. G. Wang, “Effects of seed dot layer and thin GaAs spacer layer on the structure and optical properties of upper In(Ga)As quantum dots,” J. Appl. Phys., vol. 93, no. 11, pp. 8898–8902, 2003.
[207] O. G. Schmidt and K. Eberl, “Multiple layers of self-asssembled Ge/Si islands: Photoluminescence, strain fields, material interdiffusion, and island formation,” Phys. Rev. B, vol. 61, pp. 13721–13729, May 2000.
[208] Y. Xiong and X. Zhang, “An accurate method of modeling self-assembled InAs/InGaAsP/InP (001) quantum dot with double-capping procedure,” IEEE J. Quantum Electron., vol. 53, no. 6, pp. 1–11, 2017.
[209] C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron., vol. 50, no. 9, pp. 1–9, 2014.
[210] F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov, D. Livshits, N. Kryzhanovskaya, and A. Zhukov, “Observation of zero linewidth enhancement factor at excited state band in quantum dot laser,” Electron. Lett., vol. 51, no. 21, pp. 1686–1688, 2015.
[211] H. Huang, D. Arsenijević, K. Schires, T. Sadeev, D. Bimberg, and F. Grillot, “Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states,” Aip Adv., vol. 6, no. 12, p. 125114, 2016.
[212] D. Arsenijević, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, and G. Eisenstein, “Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett., vol. 104, no. 18, p. 181101, 2014.
[213] D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying,” in SPIE Proc. 9892, p. 98920S, 2016.
[214] A. Röhm, B. Lingnau, and K. Lüdge, “Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices,” Appl. Phys. Lett., vol. 106, no. 19, p. 191102, 2015.
[215] S. Meinecke, B. Lingnau, A. Röhm, and K. Lüdge, “Stability of optically injected two‐state quantum‐dot lasers,” Ann. Phys. (Berlin), vol. 529, no. 12, p. 1600279, 2017.
[216] M. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: Experimental and theoretical investigation,” Opt. Express, vol. 18, no. 12, pp. 12832–12838, 2010.
[217] S. Breuer, M. Rossetti, W. Elsässer, L. Drzewietzki, P. Bardella, I. Montrosset, M. Krakowski, and M. Hopkinson, “Reverse-emission-state-transition mode locking of a two-section InAs/InGaAs quantum dot laser,” Appl. Phys. Lett., vol. 97, no. 7, p. 071118, 2010.
[218] B. Tykalewicz, D. Goulding, S. P. Hegarty, G. Huyet, D. Byrne, R. Phelan, and B. Kelleher, “All-optical switching with a dual-state, single-section quantum dot laser via optical injection,” Opt. Lett., vol. 39, no. 15, pp. 4607–4610, 2014.
[219] M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys., vol. 97, no. 4, p. 043523, 2005.
[220] Z. Zhang, Q. Jiang, and R. Hogg, “Simultaneous three-state lasing in quantum dot laser at room temperature,” Electron. Lett., vol. 46, no. 16, pp. 1155–1157, 2010.
[221] A. Zhukov, M. Maximov, Y. M. Shernyakov, D. Livshits, A. Savelyev, F. Zubov, and V. Klimenko, “Features of simultaneous ground- and excited-state lasing in quantum dot lasers,” Semiconductors, vol. 46, no. 2, pp. 231–235, 2012.
[222] A. Markus, M. Rossetti, V. Calligari, C. D, J. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys., vol. 100, no. 11, p. 113104, 2006.
[223] H. Wang, H. Cheng, S. Lin, and C. Lee, “Wavelength switching transition in quantum dot lasers,” Appl. Phys. Lett., vol. 90, no. 8, p. 081112, 2007.
[224] R. Pawlus, L. Columbo, P. Bardella, S. Breuer, and M. Gioannini, “Intensity noise behavior of an InAs/InGaAs quantum dot laser emitting on ground states and excited states,” Opt. Lett., vol. 43, no. 4, pp. 867–870, 2018.
[225] C. Platz, C. Paranthoën, P. Caroff, N. Bertru, C. Labbé, J. Even, O. Dehaese, H. Folliot, L. A. Corre, S. Loualiche, G. Moreau, J. Simon, and A. Ramdane, “Comparison of InAs quantum dot lasers emitting at 1.55 μm under optical and electrical injection,” Semicond. Sci. Tech., vol. 20, no. 5, pp. 459–463, 2005.
[226] G. Moreau, S. Azouigui, D. Cong, K. Merghem, A. Martinez, G. Patriarche, A. Ramdane, F. Lelarge, B. Rousseau, B. Dagens, F. Poingt, A. Accard, and F. Pommereau, “Effect of layer stacking and p-type doping on the performance of InAs/InP quantum-dash-in-a-well lasers emitting at 1.55μm,” Appl. Phys. Lett., vol. 89, no. 24, p. 241123, 2006.
[227] Y. Xiong and X. Zhang, “Wavelength Blue-Shifting and gain spectral bandwidth of InAs/InP quantum dots for laser applications around 1.55 μm,” IEEE J. Quantum Electron., vol. 54, no. 1, pp. 1–9, 2017.
[228] D. Gready and G. Eisenstein, “Carrier dynamics and modulation capabilities of 1.55-μm Quantum-Dot lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4, p. 1900307, 2013.
[229] A. Röhm, B. Lingnau, and K. Lüdge, “Understanding Ground-State quenching in Quantum-Dot lasers,” IEEE J. Quantum Electron., vol. 51, no. 1, pp. 1–11, 2015.
[230] Y. Xiong and X. Zhang, “InAs/InP quantum dots stacking: Impact of spacer layer on optical properties,” J. Appl. Phys., vol. 125, no. 9, p. 093103, 2019.
[231] Z. Lu, J. Liu, P. Poole, S. Raymond, P. Barrios, D. Poitras, G. Pakulski, P. Grant, and R. D, “An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses,” Opt. Express, vol. 17, no. 16, pp. 13609–13614, 2009.
[232] C. Wang, J. Zhuang, F. Grillot, and S. Chan, “Contribution of off-resonant states to the phase noise of quantum dot lasers,” Opt. Express, vol. 24, no. 26, pp. 29872–29880, 2016.
[233] R. Hui and M. O’Sullivan, “Chapter 3 - characterization of optical devices,” in Fiber Optic Measurement Techniques (R. Hui and M. O’Sullivan, eds.), pp. 259–363, Boston: Academic Press, 2009.
[234] C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires, P. Poole, F. Grillot, and K. Ludge, “Linewidth rebroadening in quantum dot semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 23, no. 6, pp. 1–10, 2017.
[235] J. Duan, H. Huang, Z. Lu, P. Poole, C. Wang, and F. Grillot, “Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers,” Appl. Phys. Lett., vol. 112, no. 12, p. 121102, 2018.
[236] C. Weber, P. Bardella, L. Columbo, M. Gioannini, and S. Breuer, “Radio-frequency analysis of self-mode-locked quantum dot laser,” Mater. Today Proc., vol. 7, pp. 908–911, 2019.
[237] C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron., vol. 18, no. 2, pp. 259–264, 1982.
[238] E. Li, “Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures,” Physica E: Low Dimens. Syst. Nanostruct., vol. 5, no. 4, pp. 215–273, 2000.
[239] S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors. Chichester, U.K.: Wiley, 2009.
[240] B. Annie, P. Prodhomme, and G. Bester, “First- and second-order piezoelectricity in III-V semiconductors,” Phys. Rev. B, vol. 84, no. 19, p. 195207, 2011.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top