Login | Register

Multimodal Neuroimaging Fusion in Nonsubsampled Shearlet Domain Using Location-Scale Distribution by Maximizing the High Frequency Subband Energy


Multimodal Neuroimaging Fusion in Nonsubsampled Shearlet Domain Using Location-Scale Distribution by Maximizing the High Frequency Subband Energy

Jabason, Emimal ORCID: https://orcid.org/0000-0002-2537-9470, Ahmad, M. Omair ORCID: https://orcid.org/0000-0002-2924-6659 and Swamy, M. N. S. ORCID: https://orcid.org/0000-0002-3989-5476 (2019) Multimodal Neuroimaging Fusion in Nonsubsampled Shearlet Domain Using Location-Scale Distribution by Maximizing the High Frequency Subband Energy. IEEE Access, 7 . pp. 97865-97886. ISSN 2169-3536

[thumbnail of Ahmad-IEEE Access-2019.pdf]
Text (application/pdf)
Ahmad-IEEE Access-2019.pdf - Published Version
Available under License Creative Commons Attribution.

Official URL: http://dx.doi.org/10.1109/ACCESS.2019.2930225

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Article
Authors:Jabason, Emimal and Ahmad, M. Omair and Swamy, M. N. S.
Journal or Publication:IEEE Access
  • Concordia Open Access Author Fund
  • Natural Sciences and Engineering Research Council of Canada
  • Regroupement Stratégique en Microsystèmes du Québec (ReSMiQ)
Digital Object Identifier (DOI):10.1109/ACCESS.2019.2930225
Keywords:Maximum a posteriori estimation, multimodal fusion, neuroimaging data, nonsubsampled shearlet transform, student’s t location-scale distribution
ID Code:986092
Deposited On:13 Nov 2019 21:58
Last Modified:13 Nov 2019 21:58


1. V. L. Feigin et al., "Global regional and national burden of neurological disorders during 1990–2015: A systematic analysis for the global burden of disease study 2015", Lancet Neurology, vol. 16, pp. 877-897, Nov. 2017.

2. J. Woo, M. Stone, J. L. Prince, "Multimodal registration via mutual information incorporating geometric and spatial context", IEEE Trans. Image Process., vol. 24, no. 2, pp. 757-769, Feb. 2015.

3. S. Das, M. K. Kundu, "A neuro-fuzzy approach for medical image fusion", IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3347-3353, Dec. 2013.

4. M. Yin, X. Liu, Y. Liu, X. Chen, "Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain", IEEE Trans. Instrum. Meas., vol. 68, no. 1, pp. 49-64, Jan. 2019.

5. J. Du, W. Li, B. Xiao, "Anatomical-functional image fusion by information of interest in local laplacian filtering domain", IEEE Trans. Image Process., vol. 26, no. 12, pp. 5855-5866, Dec. 2017.

6. D. P. Bavirisetti, V. Kollu, X. Gang, R. Dhuli, "Fusion of MRI and CT images using guided image filter and image statistics", Int. J. Imag. Syst. Technol., vol. 27, no. 3, pp. 227-237, Sep. 2017.

7. S. Liu, "Study on medical image enhancement based on wavelet transform fusion algorithm", J. Med. Imag. Health Informat., vol. 7, no. 2, pp. 388-392, Apr. 2017.

8. W. Zhao, H. Lu, "Medical image fusion and denoising with alternating sequential filter and adaptive fractional order total variation", IEEE Trans. Instrum. Meas., vol. 66, no. 9, pp. 2283-2294, Sep. 2017.

9. J.-J. Zong, T.-S. Qiu, "Medical image fusion based on sparse representation of classified image patches", Biomed. Signal Process. Control, vol. 34, pp. 195-205, Apr. 2017.

10. V. Calhoun, J. Sui, "Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness", Biol. Psychiatry Cognit. Neurosci. Neuroimag., vol. 1, no. 3, pp. 230-244, May 2016.

11. Y. Liu, X. Chen, R. K. Ward, Z. J. Wang, "Image fusion with convolutional sparse representation", IEEE Signal Process. Lett., vol. 23, no. 12, pp. 1882-1886, Dec. 2016.

12. M. Manchandaa, R. Sharma, "A novel method of multimodal medical image fusion using fuzzy transform", J. Vis. Commun. Image Represent., vol. 40, pp. 197-217, Oct. 2016.

13. J. Du, W. Li, B. Xiao, Q. Nawaz, "Union laplacian pyramid with multiple features for medical image fusion", Neurocomputing, vol. 194, pp. 326-339, Jun. 2016.

14. J. Du, W. Li, K. Lu, B. Xiao, "An overview of multi-modal medical image fusion", Neurocomputing, vol. 215, pp. 3-20, Nov. 2016.

15. V. Bhateja, H. Patel, A. Krishn, A. Sahu, A. Lay-Ekuakille, "Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains", IEEE Sensors J., vol. 15, no. 12, pp. 6783-6790, Dec. 2015.

16. S. Singh, D. Gupta, R. S. Anand, V. Kumar, "Nonsubsampled shearlet based CT and MR medical image fusion using biologically inspired spiking neural network", Biomed. Signal Process. Control, vol. 18, pp. 91-101, Apr. 2015.

17. L. Wang, B. Li, L. Tian, "Multimodal medical volumetric data fusion using 3-D discrete shearlet transform and global-to-local rule", IEEE Trans. Biomed. Eng., vol. 61, no. 1, pp. 197-206, Jan. 2014.

18. R. Shen, I. Cheng, A. Basu, "Cross-scale coefficient selection for volumetric medical image fusion", IEEE Trans. Biomed. Eng., vol. 60, no. 4, pp. 1069-1079, Apr. 2013.

19. G. Bhatnagar, Q. M. J. Wu, Z. Liu, "Directive contrast based multimodal medical image fusion in NSCT domain", IEEE Trans. Multimedia, vol. 15, no. 5, pp. 1014-1024, Aug. 2013.

20. F. E. Ali, I. M. El-Dokany, A. A. Saad, F. A. El-Samie, "A curvelet transform approach for the fusion of MR and CT images", J. Mod. Opt., vol. 57, no. 4, pp. 273-286, Jan. 2010.

21. S. Li, X. Kang, L. Fang, J. Hu, H. Yin, "Pixel-level image fusion: A survey of the state of the art", Inf. Fusion, vol. 33, pp. 100-112, Jun. 2017.

22. M. Kumar, S. Dass, "A total variation-based algorithm for pixel-level image fusion", IEEE Trans. Image Process., vol. 18, no. 9, pp. 2137-2143, Sep. 2009.

23. H. Li, Z. Yu, C. Mao, "Fractional differential and variational method for image fusion and super-resolution", Neurocomputing, vol. 171, pp. 138-148, Jan. 2016.

24. Y. Liu, S. Liu, Z. Wang, "A general framework for image fusion based on multi-scale transform and sparse representation", Inf. Fusion, vol. 24, pp. 147-164, Jul. 2015.

25. A. Loza, D. Bull, N. Canagarajah, A. Achim, "Non-Gaussian model-based fusion of noisy images in the wavelet domain", Comput. Vis. Image Understand., vol. 114, no. 1, pp. 54-65, 2010.

26. P. A. Hagargi, D. Shubhangi, "Brain tumor MR image fusion using most dominant features extraction from wavelet and curvelet transforms", Brain, vol. 5, no. 5, pp. 33-38, 2018.

27. S. Paris, S. W. Hasinoff, J. Kautz, "Local Laplacian filters: Edge-aware image processing with a Laplacian pyramid", Commun. ACM, vol. 58, no. 3, pp. 81-91, Feb. 2015.

28. E. Candès, L. Demanet, D. Donoho, X. Ying, "Fast discrete curvelet transforms", Multiscale Model. Simulation, vol. 5, no. 3, pp. 861-899, Sep. 2006.

29. G. Kutyniok, D. Labate, "Introduction to shearlets" in Shearlets: Multiscale Analysis for Multivariate Data, Cambridge, MA, USA:Birkhäuser, pp. 1-38, 2012.

30. D. D.-Y. Po, M. N. Do, "Directional multiscale modeling of images using the contourlet transform", IEEE Trans. Image Process., vol. 15, no. 6, pp. 1610-1620, Jun. 2006.

31. G. Easley, D. Labate, W.-Q. Lim, "Sparse directional image representations using the discrete shearlet transform", Appl. Comput. Harmon. Anal., vol. 25, no. 1, pp. 25-46, Jul. 2008.

32. R. Coifman, D. L. Donoho, "Translation invariant denoising" in Wavelets and Statistics, New York, NY, USA:Springer-Verlag, vol. 103, pp. 125-150, May 1995.

33. W.-Q. Lim, "The discrete shearlet transform: A new directional transform and compactly supported shearlet frames", IEEE Trans. Image Process., vol. 19, no. 5, pp. 1166-1180, May 2010.

34. X. Liu, W. Mei, H. Du, "Multi-modality medical image fusion based on image decomposition framework and nonsubsampled shearlet transform", Biomed. Signal Process. Control, vol. 40, pp. 343-350, Feb. 2018.

35. J. M. Fadili, L. Boubchir, "Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities", IEEE Trans. Image Process., vol. 14, no. 2, pp. 231-240, Feb. 2005.

36. E. Jabason, M. O. Ahmad, M. S. Swamy, "Statistical modeling of multimodal neuroimaging data in non-subsampled shearlet domain using the student’s t location-scale distribution", Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 1-4, May 2017.

37. R. K. Kwan, A. C. Evans, G. B. Pike, "MRI simulation-based evaluation of image-processing and classification methods", IEEE Trans. Med. Imag., vol. 18, no. 11, pp. 1085-1097, Nov. 1999, [online] Available: http://brainweb.bic.mni.mcgill.ca/brainweb/.

38. C. R. Jack et al., "The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods", J. Magn. Reson. Imag., vol. 27, no. 4, pp. 685-691, Apr. 2008, [online] Available: http://adni.loni.usc.edu/.

39. K. A. Johnson, J. A. Becker, The Whole Brain Atlas, Jun. 1999, [online] Available: http://www.med.harvard.edu/aanlib/.

40. K. Guo, D. Labate, W.-Q. Lim, G. Weiss, E. Wilson, "Wavelets with composite dilations and their MRA properties", Appl. Comput. Harmon. Anal., vol. 20, no. 2, pp. 202-236, 2006.

41. K. Guo, D. Labate, W. Lim, "Edge analysis and identification using the continuous shearlet transform", Appl. Comput. Harmon. Anal., vol. 27, no. 1, pp. 24-46, 2009.

42. D. Labate, W.-Q. Lim, G. Kutyniok, G. Weiss, "Sparse multidimensional representation using shearlets", Proc. SPIE, vol. 5914, Aug. 2005.

43. M. Xu, Image Registration and Image Fusion: Algorithms and Performance Bounds, Syracuse, New York, NY, USA, 2009.

44. L. Sendur, I. W. Selesnick, "Bivariate shrinkage with local variance estimation", IEEE Signal Process. Lett., vol. 9, no. 12, pp. 438-441, Dec. 2002.

45. S. Jackman, Bayesian Analysis for the Social Sciences, Hoboken, NJ, USA:Wiley, 2009.

46. K. L. Lange, R. J. A. Little, J. M. G. Taylor, "Robust statistical modeling using the t distribution", J. Amer. Stat. Assoc., vol. 84, no. 408, pp. 881-896, 1989.

47. D. M. Endres, J. E. Schindelin, "A new metric for probability distributions", IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1858-1860, Jul. 2003.

48. T. Stathaki, Image Fusion: Algorithms and Applications, New York, NY, USA:Academic Press, 2011.

49. J. Zhao, R. Laganiere, Z. Liu, "Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement", Int. J. Innov. Comput. Inf. Control, vol. 3, no. 6, pp. 1433-1447, 2007.

50. Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity", IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

51. R. C. Gonzalez, R. E. Woods, Digital Image Processing, Upper Saddle River, NJ, USA:Prentice-Hall, 2006.

52. C. S. Xydeas, V. Petrović, "Objective image fusion performance measure", Electron. Lett., vol. 36, no. 4, pp. 308-309, 2000.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top