Login | Register

4×4 -Element Cavity Slot Antenna Differentially-Fed by Odd Mode Ridge Gap Waveguide


4×4 -Element Cavity Slot Antenna Differentially-Fed by Odd Mode Ridge Gap Waveguide

Beltayib, Abduladeem ORCID: https://orcid.org/0000-0002-8405-1811, Afifi, Islam ORCID: https://orcid.org/0000-0001-6519-0915 and Sebak, Abdel-Razik (2019) 4×4 -Element Cavity Slot Antenna Differentially-Fed by Odd Mode Ridge Gap Waveguide. IEEE Access, 7 . pp. 48185-48195. ISSN 2169-3536

[thumbnail of Beltayib-IEEE Access-2019.pdf]
Text (application/pdf)
Beltayib-IEEE Access-2019.pdf - Published Version
Available under License Spectrum Terms of Access.

Official URL: http://dx.doi.org/10.1109/ACCESS.2019.2910254


A differential feeding for a cavity slot antenna is presented. The proposed feeding is based on a simple mechanism rather than the traditional complex networks that suffer from high losses. It is based on exciting the first higher order mode (TE10) of the ridge gap waveguide (RGW) by enlarging the ridge width. This enlargement would excite some undesired even modes that are suppressed by inserting a vertical perfectly electric conducting (PEC) wall in the middle of the waveguide based on the concept of magic tee operation. The proposed 4 × 4 cavity slot antenna is implemented using substrate integrated waveguide (SIW) technology. Two horizontal slots on the top of proposed wide RGW, representing the differential feeding approach, are implemented to feed the cavity slot antenna. The slots couple the fields with same amplitudes and 1800 phase difference to the cavity. The electric fields of the two coupling slots have odd symmetry in the x-axis, and subsequently, uniform electric field distribution of the TE440 mode of a cavity can be excited. The 4/4 radiating slots are etched on the top of the cavity in a specific distribution to ensure having in-phase fields for broadside radiation with low-cross-polarization levels. The measurement and simulation results of the proposed cavity slot antenna are in a good agreement. The obtained results confirm that the proposed antenna achieves a relative bandwidth of 7.1% for -10-dB return loss, a gain of about 16.5 dBi, and a side lobe level about -17 dB in E-plane and -13.8 dB in H-plane. Moreover, the proposed antenna provides low cross-polarization levels (-35 dB in E-plane and -27 dB in H-plane) within the operating frequency band of 32.5 to 34.9 GHz. With this achieved low profile, high gain, and high efficiency of the proposed cavity slot antenna, it may have a great potential for millimeter-wave (MMW) applications.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Article
Authors:Beltayib, Abduladeem and Afifi, Islam and Sebak, Abdel-Razik
Journal or Publication:IEEE Access
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.1109/ACCESS.2019.2910254
Keywords:Ridge gap waveguide, high order mode, differential feeding network, symmetric radiation, low cross polarization level, millimeter wave, back cavity antenna, substrate integrated waveguide
ID Code:986104
Deposited By: Krista Alexander
Deposited On:21 Nov 2019 20:14
Last Modified:21 Nov 2019 20:15


1. Z. Pi, F. Khan, "An introduction to millimeter-wave mobile broadband systems", IEEE Commun. Mag., vol. 49, pp. 101-107, Jun. 2011.

2. T. S. Rappaport et al., "Millimeter wave mobile communications for 5G cellular: It will work!", IEEE Access, vol. 1, pp. 335-349, May 2013.

3. T. S. Rappaport, J. N. Murdock, F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications", Proc. IEEE, vol. 99, no. 8, pp. 1390-1436, Aug. 2011.

4. G. H. Zhai et al., "Folded half mode substrate integrated waveguide 3 dB coupler", IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 512-514, Aug. 2008.

5. B. Sheleg, B. E. Spielman, "Broadband (7–18 GHz) 10 dB overlay coupler for MIC application", Electron. Lett., vol. 11, no. 8, pp. 175-176, Apr. 1975.

6. A. A. Sakr, W. M. Dyab, K. Wu, "Theory of polarization-selective coupling and its application to design of planar orthomode transducers", IEEE Trans. Antennas Propag., vol. 66, no. 2, pp. 749-762, Feb. 2017.

7. A. A. Sakr, W. Dyab, K. Wu, "Design methodologies of compact orthomode transducers based on mechanism of polarization selectivity", IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1279-1290, Mar. 2018.

8. F. Alessandri, M. Giordano, M. Guglielmi, G. Martirano, F. Vitulli, "A new multiple-tuned six-port Riblet-type directional coupler in rectangular waveguide", IEEE Trans. Microw. Theory Techn., vol. 51, no. 5, pp. 1441-1448, May 2003.

9. H. J. Riblet, "The short-slot hybrid junction", Proc. IRE, vol. 40, no. 2, pp. 180-184, Feb. 1952.

10. J. F. Xu, Z. N. Chen, X. M. Qing, W. Hong, "Bandwidth enhancement for a 60 GHz substrate integrated waveguide fed cavity array antenna on LTCC", IEEE Trans. Antennas Progag., vol. 59, no. 3, pp. 826-832, Mar. 2011.

11. J. F. Xu, W. Hong, P. Chen, K. Wu, "Design and implementation of low sidelobe substrate integrated waveguide longitudinal slot array antennas", IET Microw. Antennas Propag., vol. 3, no. 5, pp. 790-797, Jul. 2009.

12. G. Q. Luo, Z. F. Hu, W. J. Li, X. H. Zhang, L. L. Sun, J. F. Zheng, "Bandwidth-enhanced low-profile cavity-backed slot antenna by using hybrid SIW cavity modes", IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 1698-1704, Apr. 2012.

13. W. Han, F. Yang, J. Ouyang, P. Yang, "Single-fed high-gain circularly polarized slotted cavity antenna using TE 330 mode", Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, pp. 677-678, Jul. 2015.

14. M. Asaadi, A. Sebak, "High-gain low-profile circularly polarized slotted SIW cavity antenna for MMW applications", IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 752-755, 2016.

15. W. Han, F. Yan, R. Long, L. Zhou, F. Yan, "Single-fed low-profile high-gain circularly polarized slotted cavity antenna using a high-order mode", IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 110-113, 2016.

16. H. Jin, K.-S. Chin, W. Che, C.-C. Chang, H.-J. Li, Q. Xue, "Differential-fed patch antenna arrays with low cross polarization and wide bandwidths", IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1069-1072, 2014.

17. Z. Zhu, C. Chen, Y. Chen, G. Xue, W. Wu, "A single layer low cross-polarization antenna array based on differential-feed", Proc. IEEE Int. Workshop Electromagn. Appl. Student Innov. Competition (iWEM), pp. 1-3, May 2016.

18. M. M. M. Ali, A. Sebak, "Compact printed ridge gap waveguide crossover for future 5G wireless communication system", IEEE Microw. Wireless Compon. Lett., vol. 28, no. 7, pp. 549-551, Jul. 2018.

19. M. H. M. Shamim, H. Attia, M. S. Sharawi, A. A. Kishk, "60 GHz circularly polarized dielectric resonator antenna fed by printed ridge gap waveguide", Proc. IEEE 28th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), pp. 1-4, Oct. 2017.

20. M. S. Sorkherizi, A. Dadgarpour, A. A. Kishk, "Planar high-efficiency antenna array using new printed ridge gap waveguide technology", IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3772-3776, Jul. 2017.

21. M. S. Sorkherizi, A. A. Kishk, "Fully printed gap waveguide with facilitated design properties", IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 657-659, Sep. 2016.

22. A. Polemi, S. Maci, P.-S. Kildal, "Dispersion characteristics of a metamaterial-based parallel-plate ridge gap waveguide realized by bed of nails", IEEE Trans. Antennas Propag., vol. 59, no. 3, pp. 904-913, Mar. 2011.

23. P.-S. Kildal, A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, A. Valero-Nogueira, "Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression", IET Microw. Antennas Propag., vol. 5, no. 3, pp. 262-270, Mar. 2011.

24. S. I. Shams, A. A. Kishk, "Design of 3-dB hybrid coupler based on RGW technology", IEEE Trans. Microw. Theory Techn., vol. 65, no. 10, pp. 3849-3855, Oct. 2017.

25. C. Wu, H. Wang, X. Jiang, S. Quan, X. Liu, "High-gain dual-polarization higher order mode substrate integrated cavity antenna array", Proc. 11th Int. Symp. Antennas Propag. EM Theory (ISAPE), pp. 129-131, Oct. 2016.

26. T. Mikulasek, J. Lacik, J. Puskely, Z. Raida, "Design of aperture-coupled microstrip patch antenna array fed by SIW for 60 GHz band", IET Microw. Antennas Propag., vol. 10, no. 3, pp. 288-292, Feb. 2016.

27. T. Li, W. B. Dou, "Millimetre-wave slotted array antenna based on double-layer substrate integrated waveguide", IET Microw. Antennas Propag., vol. 9, no. 9, pp. 882-888, Jan. 2015.

28. J. Xu, Z. N. Chen, X. Qing, W. Hong, " A single-layer SIW slot array antenna with TE 20 mode ", Proc. Asia–Pacific Microw. Conf., pp. 1330-1333, Dec. 2011.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top