Login | Register

An Adaptive Approach for the Joint Antenna Selection and Beamforming Optimization


An Adaptive Approach for the Joint Antenna Selection and Beamforming Optimization

Zilli, Guilherme Martignago ORCID: https://orcid.org/0000-0003-1228-4920, Pitz, Ciro Andre, Batista, Eduardo Luiz Ortiz ORCID: https://orcid.org/0000-0001-5341-8302, Seara, Rui ORCID: https://orcid.org/0000-0002-9046-0646 and Zhu, Wei-Ping ORCID: https://orcid.org/0000-0001-7955-7044 (2019) An Adaptive Approach for the Joint Antenna Selection and Beamforming Optimization. IEEE Access, 7 . pp. 99017-99030. ISSN 2169-3536

[thumbnail of Zilli-IEEE Access-2019.pdf]
Text (application/pdf)
Zilli-IEEE Access-2019.pdf - Published Version
Available under License Creative Commons Attribution.

Official URL: http://dx.doi.org/10.1109/ACCESS.2019.2930029


Adaptive beamforming techniques are widely known for their capability of leveraging the performance of antenna arrays. The effectiveness of such techniques typically increases as the number of antennas grows. In contrast, computational and hardware costs very often limit the deployment of beamforming in large-scale arrays. To circumvent this problem, antenna selection strategies have been developed aiming to maintain much of the performance gain obtained by using a large array while keeping computational and hardware costs at acceptable levels. In this context, the present paper is dedicated to the development of two new adaptive algorithms for solving the problem of joint antenna selection and beamforming for uplink reception in mobile communication systems. Both algorithms are based on an alternating optimization strategy and are designed to operate with a limited number of radio-frequency chains. The main difference between the proposed algorithms is that the first is formulated by considering the minimum mean-square error (MMSE) criterion, while the second is based on the minimum-variance distortionless-response (MVDR) approach. The numerical simulation results confirm the effectiveness of the proposed algorithms.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Article
Authors:Zilli, Guilherme Martignago and Pitz, Ciro Andre and Batista, Eduardo Luiz Ortiz and Seara, Rui and Zhu, Wei-Ping
Journal or Publication:IEEE Access
  • Concordia Open Access Author Fund
  • Brazilian National Council for Scientific and Technological Development
  • Fonds de Recherche du Québec—Nature et Technologies
  • Natural Sciences and Engineering Research Council (NSERC) of Canada
Digital Object Identifier (DOI):10.1109/ACCESS.2019.2930029
Keywords:Adaptive arrays, antenna selection, beamforming, MMSE criterion, MVDR criterion
ID Code:986115
Deposited By: Krista Alexander
Deposited On:21 Nov 2019 20:25
Last Modified:21 Nov 2019 20:25


1. C. A. Balanis, P. I. Ioannides, Introduction to Smart Antennas, 2007.

2. J. H. Winters, "Smart antennas for wireless systems", IEEE Pers. Commun., vol. 5, pp. 23-27, Feb. 1998.

3. A. Goldsmith, Wireless Communications, New York, NY, USA:Cambridge Univ. Press, 2005.

4. T. L. Marzetta, "Noncooperative cellular wireless with unlimited numbers of base station antennas", IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010.

5. R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, A. M. Sayeed, "An overview of signal processing techniques for millimeter wave MIMO systems", IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436-453, Apr. 2016.

6. A. Ghrayeb, "A survey on antenna selection for MIMO communication systems", Proc. 2nd Int. Conf. Inf. Commun. Technol. Theory Appl. (ICTTA), pp. 2104-2109, Apr. 2006.

7. A. F. Molisch, M. Z. Win, "MIMO systems with antenna selection", IEEE Commun. Mag., vol. 5, no. 1, pp. 46-56, Mar. 2004.

8. X. Gao, O. Edfors, J. Liu, F. Tufvesson, "Antenna selection in measured massive MIMO channels using convex optimization", Proc. IEEE Globecom Workshops, pp. 129-134, Dec. 2013.

9. X. Gao, O. Edfors, F. Tufvesson, E. G. Larsson, "Massive MIMO in real propagation environments: Do all antennas contribute equally?", IEEE Trans. Commun., vol. 63, no. 11, pp. 3917-3928, Nov. 2015.

10. C. Zhou, Y. Gu, S. He, Z. Shi, "A robust and efficient algorithm for coprime array adaptive beamforming", IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1099-1112, Feb. 2018.

11. A. Alkhateeb, Y.-H. Nam, J. Zhang, R. W. Heath, "Massive MIMO combining with switches", IEEE Wireless Commun. Lett., vol. 5, no. 3, pp. 232-235, Jun. 2016.

12. R. Méndez-Rial, C. Rusu, N. González-Prelcic, A. Alkhateeb, R. W. Heath, "Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches?", IEEE Access, vol. 4, pp. 247-267, 2016.

13. A. Garcia-Rodriguez, C. Masouros, P. Rulikowski, "Reduced switching connectivity for large scale antenna selection", IEEE Trans. Commun., vol. 65, no. 5, pp. 2250-2263, May 2017.

14. S. Payami, N. M. Balasubramanya, C. Masouros, M. Sellathurai, "Phase shifters versus switches: An energy efficiency perspective on hybrid beamforming", IEEE Wireless Commun. Lett., vol. 8, no. 1, pp. 13-16, Feb. 2019.

15. A. Gorokhov, "Antenna selection algorithms for MEA transmission systems", Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp. 2857-2860, May 2002.

16. M. Gharavi-Alkhansari, A. B. Gershman, "Fast antenna subset selection in MIMO systems", IEEE Trans. Signal Process., vol. 52, no. 2, pp. 339-347, Feb. 2004.

17. A. Dua, K. Medepalli, A. J. Paulraj, "Receive antenna selection in MIMO systems using convex optimization", IEEE Trans. Wireless Commun., vol. 5, no. 9, pp. 2353-2357, Sep. 2006.

18. K. Elkhalil, A. Kammoun, T. Y. Al-Naffouri, M.-S. Alouini, "A blind antenna selection scheme for single-cell uplink massive MIMO", Proc. IEEE Globecom Workshops, pp. 1-6, Dec. 2016.

19. S. Mahboob, R. Ruby, V. Leung, "Transmit antenna selection for downlink transmission in a massively distributed antenna system using convex optimization", Proc. Int. Conf. Broadband Wireless Comput. Commun. Appl. (BWCCA), pp. 228-233, Nov. 2012.

20. S. Joshi, S. Boyd, "Sensor selection via convex optimization", IEEE Trans. Signal Process., vol. 57, no. 2, pp. 451-462, Feb. 2009.

21. I. Berenguer, X. Wang, V. Krishnamurthy, "Adaptive MIMO antenna selection", Proc. 37nth Asilomar Conf. Signals Syst. Comput., pp. 21-26, Nov. 2003.

22. I. Berenguer, X. Wang, V. Krishnamurthy, "Adaptive MIMO antenna selection via discrete stochastic optimization", IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4315-4329, Nov. 2005.

23. O. Mehanna, N. D. Sidiropoulos, G. B. Giannakis, "Joint multicast beamforming and antenna selection", IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2660-2674, May 2013.

24. O. T. Demir, T. E. Tuncer, "Multicast beamforming with antenna selection using exact penalty approach", Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. 2489-2493, Apr. 2015.

25. S. He, Y. Huang, J. Wang, L. Yang, W. Hong, "Joint antenna selection and energy-efficient beamforming design", IEEE Signal Process. Lett., vol. 23, no. 9, pp. 1165-1169, Sep. 2016.

26. X. Wang, J. Sheng, "Joint antenna selection and beamforming algorithms for physical layer multicasting with massive antennas", Algorithms, vol. 9, no. 2, pp. 1-9, Jun. 2016.

27. J. F. de Andrade, M. L. R. de Campos, J. A. Apolinário, " L 1 -constrained normalized LMS algorithms for adaptive beamforming ", IEEE Trans. Signal Process., vol. 63, no. 24, pp. 6524-6539, Dec. 2015.

28. J. F. de Andrade, M. L. R. de Campos, J. A. Apolinário, "Sparse solutions for antenna arrays", Proc. 29th Simpósio Brasileiro Telecomunicações (SBrT), pp. 1-5, Oct. 2011.

29. J. F. de Andrade, M. L. R. de Campos, J. A. Apolinário, " An \$L_{1}\$ -constrained normalized LMS algorithm and its application to thinned adaptive antenna arrays ", Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. 3806-3810, May 2013.

30. W. Shi, Y. Li, L. Zhao, X. Liu, "Controllable sparse antenna array for adaptive beamforming", IEEE Access, vol. 7, pp. 6412-6423, 2019.

31. O. L. Frost, "An algorithm for linearly constrained adaptive array processing", Proc. IEEE, vol. 60, no. 8, pp. 926-935, Aug. 1972.

32. J. A. Apolinário, S. Werner, P. S. R. Diniz, T. I. Laakso, "Constrained normalized adaptive filters for CDMA mobile communications", Proc. 9th Eur. Signal Process. Conf. (EUSIPCO), pp. 2050-2053, Sep. 1998.

33. J. C. Bezdek, R. J. Hathaway, D. B. Fogel, C. J. Robinson, "Two new convergence results for alternating optimization" in Computational Intelligence: The Experts Speak, Piscataway, NJ, USA:IEEE Press, pp. 149-164, 2003.

34. P. S. R. Diniz, Adaptive Filtering, Boston, MA, USA:Springer, 2013.

35. J. Jose, A. Ashikhmin, T. L. Marzetta, S Vishwanath, "Pilot contamination and precoding in multi-cell TDD systems", IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2640-2651, Aug. 2011.

36. B. Hassibi, B. M. Hochwald, "How much training is needed in multiple-antenna wireless links?", IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 951-963, Apr. 2003.

37. S. Noh, M. D. Zoltowski, D. J. Love, "Training sequence design for feedback assisted hybrid beamforming in massive MIMO systems", IEEE Trans. Commun., vol. 64, no. 1, pp. 187-200, Jan. 2016.

38. J. A. Zhang, T. Yang, Z. Chen, "Under-determined training and estimation for distributed transmit beamforming systems", IEEE Trans. Wireless Commun., vol. 12, no. 4, pp. 1936-1946, Apr. 2013.

39. S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge, U.K.:Cambridge Univ. Press, 2004.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top