Ding, Kejia
(2019)
*Innovative Butler Matrix Concepts Based on Novel Components For 2-D Beamforming.*
PhD thesis, Concordia University.

Preview |
Text (application/pdf)
15MBKejia_PhD_S2020.pdf - Accepted Version Available under License Spectrum Terms of Access. |

## Abstract

Several innovative concepts and schemes to enrich the features of Butler matrices (BMs) to enhance their suitability over the conventional schemes are discussed, demonstrated, and analyzed. Mobile communication and radar systems require compact and versatile multibeam-forming networks (MBFNs). Therefore, the study is aimed to provide feasible and practical solutions with more flexible beam numbers of BMs, more concise configurations of the two-dimensional (2-D) beamforming, and broadband characteristics while maintaining the intrinsic merits of conventional BMs (such as theoretically lossless, spatially orthogonal beams, and relatively simple structure). In addition, the study implements some of the concepts to millimeter-wave (mm-wave) frequencies applications.

Concretely, the effects of some components, such as T-junctions and crossovers, on the bandwidth of parallel-feeding networks and MBFNs, are investigated and analyzed. The corresponding solutions to broaden the bandwidth are suggested and verified by the measurements. Further, for the 2-D beamforming based on BMs, a generalized scheme to build 2-D MBFN with any 2M+N beams based on traditional 2M× 2M- and 2N× 2N BMs is elaborated and experimentally verified. Especially as the key component of 2-D BMs, an innovative eight-port coupler with a very compact structure is proposed. The applications of the coupler for 2-D monopulse arrays, dual-polarized monopulse arrays, and mm-wave 2-D beamforming are also demonstrated. Besides, two solutions to extend the numbers of beams of BMs from traditional 2N × 2N to almost arbitrary number, such as 2M×3N or M × 2N, are introduced by using a three-way coupler and electrically switchable coupler, respectively (M and N are arbitrary integers greater than 0).

Though the majority of ideas and examples presented is exemplified by planar circuits and transverse-electro-magnetic (TEM) transmission lines, they can also be transferred to and applied on other circuit forms, such as ridge-gap waveguide (RGW), printed RGW (PRGW), substrate-integrated waveguide (SIW), and packaged microstrip line (PMSL) for mm-wave applications.

Keywords: Butler matrices, two-dimensional Butler matrices, directional couplers, reconfigurable couplers, phase shifters, crossovers, eight-port couplers, packaged microstrip line.

Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering |
---|---|

Item Type: | Thesis (PhD) |

Authors: | Ding, Kejia |

Institution: | Concordia University |

Degree Name: | Ph. D. |

Program: | Electrical and Computer Engineering |

Date: | 17 October 2019 |

Thesis Supervisor(s): | Kishk, Ahmed |

Keywords: | Butler matrices, two-dimensional Butler matrices, directional couplers, reconfigurable couplers, phase shifters, crossovers, eight-port couplers, packaged microstrip line. |

ID Code: | 986274 |

Deposited By: | KEJIA DING |

Deposited On: | 25 Jun 2020 18:42 |

Last Modified: | 25 Jun 2020 18:42 |

## References:

[1] J. Butler and R. Lowe, “Beamforming matrix simplify design of electronically scanned antennas,” Electron. Design, vol. 9, pp. 170-173, Apr. 1961.[2] J. Shelton, and K. S. Kelleher, “Multiple beams from linear arrays,” IRE Trans. Antennas Propag., vol. 9, no. 2, pp. 154-161, Mar. 1961.

[3] J. W. Lian, Y. L. Ban, C. Xiao, and Z. F. Yu, “Compact substrate-integrated 4 × 8 Butler matrix with sidelobe suppression for millimeter-wave multibeam application,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 5, pp. 928-932, May 2018.

[4] J. W. Lian, Y. L. Ban, Q. L. Yang, B. Fu, Z. F. Yu and L. K. Sun, “Planar millimeter-wave 2-D beam-scanning multibeam array antenna fed by compact SIW beam-forming network,” IEEE Trans. Antennas Propag., vol. 66, no. 3, pp. 1299-1310, March 2018.

[5] J. Blass, “The multidirectional antenna: A new approach to stacked beams,” in. IRE Int. Conv. Rec., pp. 48-50, 1960.

[6] J. Nolen, “Synthesis of multiple beam networks for arbitrary illuminations,” Ph.D. dissertation, Baltimore, MD, Apr. 1965, Radio Division, Bendix Corp.

[7] W. Rotman and R. Turner, “Wide-angle microwave lens for line source applications,” IEEE Trans. Antennas. Propag., vol. 11, no. 6, pp. 623-632, Nov. 1963.

[8] P. S. Hall and S. J. Vetterlein, “Review of radio frequency beamforming techniques for scanned and multiple beam antennas,” in IEE Proc.H - Microw., Antennas Propag., vol. 137, no. 5, pp. 293-303, Oct. 1990.

[9] S. Gruszczynski, K. Wincza and K. Sachse, “Reduced sidelobe four-beam N-element antenna arrays fed by 4 × N Butler matrices," IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 430-434, 2006.

[10] K. Wincza and S. Gruszczynski, “Broadband integrated 8×8 butler matrix utilizing quadrature couplers and Schiffman phase shifters for multibeam antennas with broadside beam,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 8, pp. 2596–2604, Aug. 2016.

[11] M. Nedil, T. A. Denidni, and L. Talbi, “Novel Butler matrix using CPW multilayer technology,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 499–507, Jan. 2006.

[12] Y. Li, J. Wang and K. Luk, “Millimeter-wave multibeam aperture-coupled magnetoelectric dipole array with planar substrate integrated beamforming network for 5G applications,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6422-6431, Dec. 2017.

[13] J. Remez and R. Carmon, "Compact Designs of Waveguide Butler Matrices," IEEE Antennas Wirel. Propag. Lett., vol. 5, pp. 27-31, 2006.

[14] M. Kishihara, A. Yamaguchi, Y. Utsumi and I. Ohta, “Fabrication of waveguide butler matrix for short millimeter-wave using X-ray lithography,” in Proc. IEEE MTT-S, Int. Microw. Symp. (IMS), Honolulu, HI, 2017, pp. 568-571.

[15] M. M. M. Ali and A. Sebak, “2-D scanning magnetoelectric dipole antenna array fed by RGW Butler matrix,” IEEE Trans. Antennas Propag., vol. 66, no. 11, pp. 6313-6321, Nov. 2018.

[16] F. Julian, G. Bernal and E. Rajo-Iglesias, “Design of a wide band Butler matrix in groove gap waveguide technology,” In Proc. Int. Symp. Antennas Propag. (ISAP), Phuket, 2017, pp. 1-2.

[17] N. Ashraf, A. A. Kishk and A. Sebak, “AMC packaged - Butler matrix for millimeter wave beamforming,” in Proc. IEEE/AP-S Int. Symp. Antennas Propag., Boston, MA, 2018, pp. 417-418.

[18] C. Liu, S. Xiao, Y. Guo, M., Tang, Y. Bai and B. Wang, “Circularly polarized beam-steering antenna array with Butler matrix network,” IEEE Antennas Wireless Propaga. Lett., vol. 10, pp. 1278-1281, 2011.

[19] L. Zhong, Y. Ban, J. Lian, Q. Yang, J. Guo and Z. Yu, “Miniaturized SIW multibeam antenna array fed by dual-layer 8 × 8 Butler matrix,” IEEE Antennas Wireless Propaga. Lett., vol. 16, pp. 3018-3021, 2017.

[20] D. M. Pozar and B. Kaufman, “Comparison of three methods for the measurement of printed antenna efficiency,” IEEE Trans. Antennas Propag., vol. AP-36, no. 1, pp. 136–139, Jan. 1988.

[21] M. S. Abdallah, Y. Wang, W. M. Abdel-Wahab, and S. Safavi-Naeini, “Design and optimization of SIW center-fed series rectangular dielectric resonator antenna array with 45° linear polarization,” IEEE Trans. Antennas Propag., vol. 66, no. 1, pp. 23–31, Jan. 2018.

[22] J. Xu, W. Hong, H. Zhang, G. Wang, Y. Yu, and Z. H. Jiang, “An array antenna for both long–and medium-range 77 GHz automotive radar applications,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 7207–7216, Dec. 2017.

[23] R. Mailloux, J. McIlvenna, and N. Kernweis, “Microstrip array technology,” IEEE Trans. Antennas Propag., vol. AP-29, no. 1, pp. 25–37, Jan. 1981.

[24] W. Wang, J. Wang, A. Liu, and Y. Tian, “A novel broadband and high-isolation dual-polarized microstrip antenna array based on quasisubstrate integrated waveguide technology,” IEEE Trans. Antennas Propag., vol. 66, no. 2, pp. 951–956, Feb. 2018.

[25] K. Ding, X. Fang, A. Chen, and Y. Wang, “A novel parallel-series feeding network based on three-way power divider for microstrip antenna array,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 757–760, 2013.

[26] E. Levine, G. Malamud, S. Shtrikman, and D. Treves, “A study of microstrip array antennas with the feed network,” IEEE Trans. Antennas Propag., vol. 37, no. 4, pp. 426–434, Apr. 1989.

[27] M. Zhang, J. Hirokawa, and M. Ando, “A four-way divider for partially corporate feed in an alternating-phase fed single-layer slotted waveguide array,” IEEE Trans. Antennas Propag., vol. 56, no. 6, pp. 1790–1794, Jun. 2008.

[28] Y. Miura, J. Hirokawa, M. Ando, K. Igarashi, and G. Yoshida, “A circularly-polarized aperture array antenna with a corporate-feed hollow-waveguide circuit in the 60 GHz-band,” in Proc. IEEE Int. Symp. Antennas Propag. (APSURSI), Jul. 2011, pp. 3029–3032.

[29] H. Irie and J. Hirokawa, “Perpendicular-corporate feed in three-layered parallel-plate radiating-slot array,” IEEE Trans. Antennas Propag., vol. 65, no. 11, pp. 5829–5836, Nov. 2017.

[30] M. Sano, J. Hirokawa, and M. Ando, “Single-layer corporate-feed slot array in the 60-GHz band using hollow rectangular coaxial lines,” IEEE Trans. Antennas Propag., vol. 62, no. 10, pp. 5068–5076, Oct. 2014.

[31] A. U. Zaman and P.-S. Kildal, “Wide-band slot antenna arrays with single-layer corporate-feed network in ridge gap waveguide technology,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2992–3001, Jun. 2014.

[32] S. G. Zhou, G. L. Huang, T. H. Chio, J. J. Yang, and G. Wei, “Design of a wideband dual-polarization full-corporate waveguide feed antenna array,” IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4775–4782, Nov. 2015.

[33] Z. Shi-Gang, H. Guan-Long, P. Zhao-Hang, and L.-J. Ying, “A wideband full-corporate-feed waveguide slot planar array,” IEEE Trans. Antennas Propag., vol. 64, no. 5, pp. 1974–1978, May 2016.

[34] K. Ding and A. Kishk, “Bandwidth enhancement for parallel feeding networks by regulating transmission line lengths,” in Proc. IEEE Int. Symp. Antennas Propag. (APS/URSI), Jul. 2018, pp. 1–2.

[35] J. Shao, H. Ren, B. Arigong, C. Z. Li, and H. L. Zhang, “A fully symmetrical crossover and its dual-frequency application,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2410–2416, Aug. 2012.

[36] N. Ashraf, A. A. Kishk and A. Sebak, “Broadband millimeter-wave beamforming components augmented with AMC packaging,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 10, pp. 879-881, Oct. 2018.

[37] M. M. M. Ali and A. Sebak, “Compact printed ridge gap waveguide crossover for future 5G wireless communication system,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 7, pp. 549-551, July 2018.

[38] Y. Wang, K. Ma and Z. Jian, “A low-loss Butler matrix using patch element and honeycomb concept on SISL platform,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 8, pp. 3622-3631, Aug. 2018.

[39] E. Gandini, M. Ettorre, R. Sauleau and A. Grbic, “A lumped-element unit cell for beam-forming networks and its application to a miniaturized Butler matrix,” IEEE Trans. on Microw. Theory Techn., vol. 61, no. 4, pp. 1477-1487, Apr. 2013.

[40] G. Tian, J. Yang and W. Wu, “A novel compact Butler matrix without phase shifter,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 5, pp. 306-308, May 2014.

[41] M. M. M. Ali and A. Sebak, “2-D Scanning Magnetoelectric Dipole Antenna Array Fed by RGW Butler Matrix,” IEEE Trans Antennas Propag., vol. 66, no. 11, pp. 6313-6321, Nov. 2018.

[42] H. Ren, B. Arigong, M. Zhou, J. Ding, H. Zhang, “A novel design of 4 × 4 Butler matrix with relatively flexible phase differences,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1277-1280, 2016.

[43] R. D. Cerna and M. A. Yarleque, “A 3D compact wideband 16×16 Butler matrix for 4G/3G applications," in IEEE/MTT-S Int. Microw. Symp., Philadelphia, PA, 2018, pp. 16-19.

[44] A. A. M. Ali, N. J. G. Fonseca, F. Coccetti and H. Aubert, “Design and implementation of two-layer compact wideband Butler matrices in SIW technology for Ku-band applications,” IEEE Trans. Antennas Propag., vol. 59, no. 2, pp. 503-512, Feb. 2011.

[45] A. Moscoso-Mártir, I. Molina-Fernández and A. Ortega-Moñux, "Wideband slot-coupled Butler matrix," IEEE Microw. Wireless Compon. Lett., vol. 24, no. 12, pp. 848-850, Dec. 2014.

[46] Y. Li and K.-M. Luk, “60-GHz dual-polarized two-dimensional switch-beam wideband antenna array of aperture-coupled magneto-electric dipoles,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 554–563, Feb. 2016.

[47] A. B. Guntupalli, T. Djerafi, and K. Wu, “Two-dimensional scanning antenna array driven by integrated waveguide phase shifter,” IEEE Trans Antennas Propag., vol. 62, no. 3, pp. 1117-1124, 2014.

[48] W. Chen, Y. Hsieh, C. Tsai, Y. Chen, C. Chang and S. Chang, "A compact two-dimensional phased array using grounded coplanar-waveguides Butler matrices," in Proc. Eur. Microw. Conf., Amsterdam, 2012, pp. 747-750.

[49] J. W. Lian, Y. L. Ban, Q. L. Yang, B. Fu, Z. F. Yu and L. K. Sun, “Planar millimeter-wave 2-D beam-scanning multibeam array antenna fed by compact SIW beam-forming network,” IEEE Trans. Antennas Propag., vol. 66, no. 3, pp. 1299-1310, March 2018.

[50] W. Y. Chen, Ming-Huei Huang, Pei-Yu Lyu, S. F. Chang and C. C. Chang, “A 60-GHz CMOS 16-beam beamformer for two-dimensional array antennas,” in IEEE MTT-S Int. Microw. Symp. Dig., Tampa, FL, 2014, pp. 1-3.

[51] S. I. Orakwue, R. Ngah, and T. A. Rahman, “A two-dimensional beam scanning array antenna for 5G wireless communications,” in IEEE Wireless Commun. Netw. Conf. Workshop, Doha, 2016, pp. 1-4.

[52] W. F. Moulder, W. Khalil, and J. L. Volakis, “60-GHz two-dimensionally scanning array employing wideband planar switched beam network,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 818-821, 2010.

[53] J. Wang, Y. Li, L. Ge, J. Wang, and K. M. Luk, “A 60 GHz horizontally polarized magnetoelectric dipole antenna array with 2-D multibeam endfire radiation,” IEEE Trans. Antennas Propag., vol. 65, no. 11, pp. 5837-5845, Nov. 2017.

[54] B. M. Schiffman, “A new class of broad-band microwave 90-degree phase shifters,” IRE Trans. Microw. Theory Techn., vol. MTT-6, pp. 232-237, Apr. 1958.

[55] S. Y. Zheng, W. S. Chan, and K. F. Man, “Broadband phase shifter using loaded transmission line,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 498-500, Sept. 2010.

[56] S. Y. Zheng and W. S. Chan, “Differential RF phase shifter with harmonic suppression,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2891-2899, June 2014.

[57] K. Ding, A. A. Kishk, “Two-dimensional Butler matrix concept for planar array,” in Proc. IEEE MTT-S, Int. Microw. Symp. Dig., Philadelphia, PA, 2018, pp. 1-4.

[58] K. Ding, A. A. Kishk, “Two-dimensional Butler matrix and phase-shifter group,” IEEE Trans. Microw. Theory Techn., vol. 66 December 2018.

[59] G. P. Riblet, “A compact planar microstrip-slot line symmetrical junction comparator circuit,” in Proc. IEEE MTT-S, Int. Microw. Symp. Dig., Long Beach, CA, USA, 1989, pp. 239-242 vol.1.

[60] G. P. Riblet, “A compact ring-style 8-port comparator circuit using coupled lines,” IEEE Trans. Microw. Theory Techn., vol. 41, no. 6, pp. 1224 - 1226, June 1993.

[61] T. Kawai, K. Iio, I. Ohta and T. Kaneko, “A branch-line-type eight-port comparator circuit,” in Proc. IEEE MTT-S, Int. Microw. Symp. Dig., Boston, MA, USA, 1991, pp. 869-872 vol.2.

[62] I. Ohta, T. Kawai, S. Shimahashi and K. Ho, “A transmission-line-type eight-port hybrid,” in Proc. IEEE MTT-S, Int. Microw. Symp. Dig., Albuquerque, NM, USA, 1992, pp. 119-122 vol.1.

[63] H. Ting, S. Hsu and T. Wu, "A novel and compact eight-port forward-wave directional coupler with arbitrary coupling level design using four-mode control technology," IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 467-475, Feb. 2017.

[64] H. Ting, S. Hsu and T. Wu, "Broadband eight-port forward-wave directional couplers and four-way differential phase shifter," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 5, pp. 2161-2169, May 2018.

[65] J. L. Vazquez-Roy, A. Tamayo-Domínguez, E. Rajo-Iglesias and M. Sierra-Castañer, “Radial line slot antenna design with groove gap waveguide feed for monopulse radar systems,” IEEE Trans. Antennas Propaga., vol. 67, 2019. (Early access)

[66] F. Zhao, Y. J. Cheng, P. F. Kou and S. S. Yao, “A wideband low-profile monopulse feeder based on silicon micromachining technology for W-band high-resolution system,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 8, pp. 1676-1680, Aug. 2019.

[67] Y. Wang, G. Wang, Z. Yu, J. Liang and X. Gao, “Ultra-wideband E-plane monopulse antenna using Vivaldi antenna,” IEEE Trans. Antennas Propaga., vol. 62, no. 10, pp. 4961-4969, Oct. 2014.

[68] S. Wang and W. Lin, “A 10/24-GHz CMOS/IPD monopulse receiver for angle-discrimination radars,” IEEE Tran. Circuits Syst. I, Reg. Papers, vol. 61, no. 10, pp. 2999-3006, Oct. 2014.

[69] K. Tekkouk, M. Ettorre and R. Sauleau, “Multibeam pillbox antenna integrating amplitude-comparison monopulse technique in the 24 GHz band for tracking applications,” IEEE Trans. Antennas Propag., vol. 66, no. 5, pp. 2616-2621, May 2018.

[70] P. F. Kou and Y. J. Cheng, “A dual circular-polarized extremely thin monopulse feeder at W-band for prime focus reflector antenna,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 2, pp. 231-235, Feb. 2019.

[71] J. Zhu, S. Liao, S. Li and Q. Xue, “60 GHz substrate-integrated waveguide-based monopulse slot antenna arrays,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4860-4865, Sept. 2018.

[72] S. Moon, I. Yom and H. L. Lee, “K-band phase discriminator using multiport downconversion for monopulse tracker,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 6, pp. 599-601, June 2017.

[73] A. Vosoogh, A. Haddadi, A. U. Zaman, J. Yang, H. Zirath and A. A. Kishk, “W-band low-profile monopulse slot array antenna based on gap waveguide corporate-feed network,” IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 6997-7009, Dec. 2018.

[74] P. Zheng, G. Zhao, S. Xu, F. Yang, and H. Sun, “Design of a W-Band full-polarization monopulse Cassegrain antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 99-103, Apr. 2016.

[75] G. Huang, S. Zhou, T. Chio, C. Sim and T. Yeo, "Wideband dual-polarized and dual-monopulse compact array for SAR system integration applications," IEEE Geosci. Remote Sens. Lett, vol. 13, no. 8, pp. 1203-1207, Aug. 2016.

[76] J. Reed and G. J. Wheeler, “A method of analysis of symmetrical four-port networks,” IRE Trans. Microw. Theory Techn., vol. 4, no. 4, pp. 246-252, October 1956.

[77] A. M. Abbosh and M. E. Bialkowski, “Design of compact directional couplers for UWB applications,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 2, pp. 189-194, Feb. 2007.

[78] K. Ding and A. A. Kishk, “Compact comparator for dual-polarized monopulse array based on novel eight-port coupler,” in Proc. IEEE/AP-S Int. Symp. Antennas Propag., Atlanta, GA, USA, 2019.

[79] K. Ding and A. A. Kishk, “Compact comparator for 2-D monopulse array based on novel eight-port coupler,” in Proc. IEEE/AP-S Int. Symp. Antennas Propag., Atlanta, GA, USA, 2019.

[80] H. E. Foster and R. E. Hiatt, “Butler network extension to any number of antenna ports,” IEEE Trans. Antennas Propag., vol. AP-18, no. 9, pp. 818–820, Nov. 1970.

[81] S. Gruszczynski, K. Wincza, and K. Sachse, “Reduced sidelobe four beam N-element antenna arrays fed by 4 × N Butler matrices,” IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 430–434, 2006.

[82] K. Wincza, S. Gruszczynski, K. Sachse, "Reduced sidelobe four-beam antenna array fed by modified Butler matrix," Electron. Lett., vol. 42, no. 9, pp. 508-509, Apr. 2006.

[83] L. G. Sodin, “Method of synthesizing a beam-forming device for the N-beam and N-element array antenna, for any N,” IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 1771–1776, Apr. 2012.

[84] K. Ding, X. Fang, Y. Wang and A. Chen, “Printed dual-layer three-way directional coupler utilized as 3 × 3 beamforming network for orthogonal three-beam antenna array,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 911-914, 2014.

[85] S. Odrobina, K. Staszek, K. Wincza and S. Gruszczynski, “Broadband 3 x 3 butler matrix,” in Conf. Microw. Tech. (COMITE), Brno, 2017, pp. 1-5.

[86] S. Gruszczynski and K. Wincza, “Broadband 4 × 4 Butler matrices as a connection of symmetrical multisection coupled-line 3-dB directional couplers and phase correction networks,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 1-9, Jan. 2009.

[87] K. Wincza, S. Gruszczynski, and K. Sachse, “Broadband planar fully integrated 8 × 8 Butler matrix using coupled-line directional couplers,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2441-2446, Oct. 2011.

[88] K. Wincza, K. Staszek, and S. Gruszczynski, “Broadband multibeam antenna arrays fed by frequency-dependent Butler matrices,” IEEE Trans. Antennas Propag., vol. 65, no. 9, pp. 4539-4547, Sept. 2017.

[89] M. Nedil, T. A. Denidni, and L. Talbi, “Novel Butler matrix using CPW multi-layer technology,” in IEEE int. Symp. AP-S, 2005, pp. 299-302, vol. 3A.

[90] K. Ding, F. He, X. Ying, and J. Guan, “A compact 8×8 Butler matrix based on double-layer structure,” in Proc. IEEE Int. Symp. MAPE, 2013, Chengdu, 2013, pp. 650-653.

[91] Zhai, Y., Fang, X., Ding, K., and He, F. “Miniaturization design for 8× 8 Butler matrix based on back-to-back bilayer microstrip,” Int. J Antennas Propag., 2014.

[92] Y. S. Wong, S. Y. Zheng, and W. S. Chan, “Quasi-arbitrary phase-difference hybrid coupler,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1530-1539, Jun. 2012.

[93] M. J. Park, “Comments on “Quasi-arbitrary phase-difference hybrid coupler,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1397-1398, March 2013.

[94] Y. Wu, J. Shen, and Y. Liu, “Comments on “quasi-arbitrary phase-difference hybrid coupler,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1725-1727, April 2013.

[95] G. Tian, J. P. Yang, and W. Wu, “A novel compact Butler matrix without phase shifter,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 5, pp. 306-308, May 2014.

[96] H. Ren, B. Arigong, M Zhou, J. Ding, and H. Zhang, “A novel design of 4×4 Butler matrix with relatively flexible phase differences”, IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1277-1280, 2016.

[97] K. Ding, J. Bai, and A. Kishk, “A quasi Butler matrix with 6×6 beam-forming capacity using 3×3 hybrid couplers,” in Proc. 32nd General Assembly Scientific Symp. Int. Union Radio Sci., Montreal, QC, 2017, pp. 1-4.

[98] C. C. Chang, R. H. Lee and T. Y. Shih, “Design of a beam switching/steering Butler matrix for phased array system,” IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 367-374, Feb. 2010.

[99] H. N. Chu and T. G. Ma, “An extended 4 x 4 Butler matrix with enhanced beam controllability and widened spatial coverage,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1301 - 1311, 2018.

[100] K. Ding and A. A. Kishk, “Multioctave bandwidth of parallel-feeding network based on impedance transformer concept,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2803-2808, April 2019.

[101] K. Ding and A. A. Kishk, “Investigation of imperfect isolation of crossovers on Butler matrices,” IEEE Trans. Microw. Theory Techn., (Submitted).

[102] D. M. Pozar, Microwave Engineering. Hoboken, NJ: Wiley, 2012.

[103] W. Menzel and I. Wolff, “A method for calculating the frequency-dependent properties of microstrip discontinuities,” IEEE Trans. Microw. Theory Tech., vol. 25, no. 2, pp. 107-112, Feb 1977.

[104] N. H. L. Koster and R. H. Jansen, “The microstrip step discontinuity: a revised description,” IEEE Trans. Microw. Theory Tech., vol. 34, no. 2, pp. 213-223, Feb 1986.

[105] X. Tang and K. Mouthaan, "Design of large bandwidth phase shifters using common mode all-pass networks," IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 55-57, Feb. 2012.

[106] X. Tang and K. Mouthaan, "Large bandwidth digital phase shifters with all-pass, high-pass, and low-pass networks," IEEE Trans. Microw. Theory Techn., vol. 61, no. 6, pp. 2325-2331, June 2013.

[107] K. Ding, A. A. Kishk, “Very concise eight-port coupler for two-dimensional beamforming application,” in Proc. IEEE/MTT-S Int. Microw. Symp., Boston, MA, USA, June 2019, pp. 1241-1244.

[108] C. G. Montgomery, R. H. Dicke, and E.M. Purcel1, Microwave Circuits, New York, USA: McGraw-Hill, 1948.

[109] J. Lu, Z. Kuai, X. Zhu and N. Zhang, "A high-isolation dual-polarization microstrip patch antenna with quasi-cross-shaped coupling slot," IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2713-2717, July 2011.

[110] K. Ding and A. A. Kishk, “Wideband hybrid coupler with electrically switchable phase-difference performance,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 11, pp. 992-994, Nov. 2017.

[111] K. Ding and A. A. Kishk, “Extension of Butler matrix number of beams based on reconfigurable couplers,” IEEE Trans. Antennas Propag., vol. 67, no. 6, pp. 3789-3796, June 2019.

[112] H. Zhu, H. Sun, B. Jones, C. Ding and Y. J. Guo, “Wideband dual-polarized multiple beam-forming antenna arrays,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1590-1604, March 2019.

[113] H. Chaloupka, “Application of high-temperature superconductivity to antenna arrays with analogue signal processing capability,” in Proc. 24th Eur. Microwave Conf., Cannes, France, 1994, pp. 23-35.

[114] A. Corona and M. J. Lancaster, “A High-temperature superconducting Butler matrix,” IEEE Trans. Appl. Supercond., vol. 13, no. 4, pp. 3867-3872, Dec. 2003.

[115] W. Liu, Z. Zhang, Z. Feng and M. F. Iskander, “A compact wideband microstrip crossover,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 5, pp. 254-256, May 2012.

Repository Staff Only: item control page