Login | Register

Inattentional Blindness for Redirected Walking Using Dynamic Foveated Rendering


Inattentional Blindness for Redirected Walking Using Dynamic Foveated Rendering

Joshi, Yashas and Poullis, Charalambos ORCID: https://orcid.org/0000-0001-5666-5026 (2020) Inattentional Blindness for Redirected Walking Using Dynamic Foveated Rendering. IEEE Access, 8 . pp. 39013-39024. ISSN 2169-3536

[thumbnail of Poullis-IEEE Access-2020.pdf]
Text (application/pdf)
Poullis-IEEE Access-2020.pdf - Published Version
Available under License Creative Commons Attribution.

Official URL: http://dx.doi.org/10.1109/ACCESS.2020.2975032


Redirected walking is a Virtual Reality(VR) locomotion technique which enables users to navigate virtual environments (VEs) that are spatially larger than the available physical tracked space. In this work we present a novel technique for redirected walking in VR based on the psychological phenomenon of inattentional blindness. Based on the user's visual fixation points we divide the user's view into zones. Spatially-varying rotations are applied according to the zone's importance and are rendered using foveated rendering. Our technique is real-time and applicable to small and large physical spaces. Furthermore, the proposed technique does not require the use of stimulated saccades but rather takes advantage of naturally occurring saccades and blinks for a complete refresh of the framebuffer. We performed extensive testing and present the analysis of the results of three user studies conducted for the evaluation.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Computer Science and Software Engineering
Item Type:Article
Authors:Joshi, Yashas and Poullis, Charalambos
Journal or Publication:IEEE Access
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.1109/ACCESS.2020.2975032
Keywords:Redirection, navigation, interaction, virtual reality, inattentional blindness, foveated rendering, redirected walking
ID Code:986922
Deposited By: Krista Alexander
Deposited On:26 Jun 2020 14:08
Last Modified:26 Jun 2020 14:08


1. M. Azmandian, T. Grechkin and E. S. Rosenberg, "An evaluation of strategies for two-user redirected walking in shared physical spaces", Proc. IEEE Virtual Reality (VR), pp. 91-98, Mar. 2017.

2. A. T. Bahill, M. R. Clark and L. Stark, "The main sequence a tool for studying human eye movements", Math. Biosci., vol. 24, no. 4, pp. 191-204, Jan. 1975.

3. A. R. Bentivoglio, S. B. Bressman, E. Cassetta, D. Carretta, P. Tonali and A. Albanese, "Analysis of blink rate patterns in normal subjects", Movement Disorders, vol. 12, no. 6, pp. 1028-1034, Nov. 1997.

4. B. Bolte and M. Lappe, "Subliminal reorientation and repositioning in immersive virtual environments using saccadic suppression", IEEE Trans. Vis. Comput. Graphics, vol. 21, no. 4, pp. 545-552, Apr. 2015.

5. D. C. Burr, M. C. Morrone and J. Ross, "Selective suppression of the magnocellular visual pathway during saccadic eye movements", Nature, vol. 371, no. 6497, pp. 511-513, Oct. 1994.

6. L.-P. Cheng, T. Roumen, H. Rantzsch, S. Köhler, P. Schmidt, R. Kovacs, et al., "TurkDeck: Physical virtual reality based on people", Proc. 28th Annu. ACM Symp. Interface Softw. Technol. (UIST), pp. 417-426, 2015.

7. R. R. Christensen, J. M. Hollerbach, Y. Xu and S. G. Meek, "Inertial-force feedback for the treadport locomotion interface", Presence Teleoperators Virtual Environ., vol. 9, no. 1, pp. 1-14, Feb. 2000.

8. C. Christou, A. Tzanavari, K. Herakleous and C. Poullis, "Navigation in virtual reality: Comparison of gaze-directed and pointing motion control", Proc. 18th Medit. Electrotech. Conf. (MELECON), pp. 1-6, Apr. 2016.

9. R. P. Darken, W. R. Cockayne and D. Carmein, "The omni-directional treadmill: A locomotion device for virtual worlds", Proc. 10th Annu. ACM Symp. Interface Softw. Technol. (UIST), pp. 213-221, 1997.

10. Z.-C. Dong, X.-M. Fu, C. Zhang, K. Wu and L. Liu, "Smooth assembled mappings for large-scale real walking", ACM Trans. Graph., vol. 36, no. 6, pp. 1-13, Nov. 2017.

11. K. J. Fernandes, V. Raja and J. Eyre, "Cybersphere: The fully immersive spherical projection system", Commun. ACM, vol. 46, no. 9, pp. 141-146, 2003.

12. Y. He, Y. Gu and K. Fatahalian, "Extending the graphics pipeline with adaptive multi-rate shading", ACM Trans. Graph., vol. 33, no. 4, pp. 142:1-142:12, Jul. 2014.

13. E. Hodgson and E. Bachmann, "Comparing four approaches to generalized redirected walking: Simulation and live user data", IEEE Trans. Vis. Comput. Graphics, vol. 19, no. 4, pp. 634-643, Apr. 2013.

14. E. Hodgson, E. Bachmann and T. Thrash, "Performance of redirected walking algorithms in a constrained virtual world", IEEE Trans. Vis. Comput. Graphics, vol. 20, no. 4, pp. 579-587, Apr. 2014.

15. J.-Y. Huang, "An omnidirectional stroll-based virtual reality interface and its application on overhead crane training", IEEE Trans. Multimedia, vol. 5, no. 1, pp. 39-51, Mar. 2003.

16. M. R. Ibbotson and S. L. Cloherty, "Visual perception: Saccadic omission-suppression or temporal masking?", Current Biol., vol. 19, no. 12, pp. R493-R496, 2009.

17. H. Iwata, "Walking about virtual environments on an infinite floor", Proc. IEEE Virtual Reality, pp. 286-293, Mar. 1999.

18. H. Iwata and T. Fujii, "Virtual perambulator: A novel interface device for locomotion in virtual environment", Proc. IEEE Virtual Reality Annu. Int. Symp., pp. 60-65, Mar. 1996.

19. R. Kennedy, J. Drexler, D. Compton, K. Stanney, D. Lanham and D. Harm, "Configural scoring of simulator sickness cybersickness and space adaptation syndrome: Similarities and differences" in Virtual and Adaptive Environments: Applications Implications and Human Performance Issues, New York, NY, USA:Taylor & Francis, pp. 247, 2003.

20. R. S. Kennedy, N. E. Lane, K. S. Berbaum and M. G. Lilienthal, "Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness", Int. J. Aviation Psychol., vol. 3, no. 3, pp. 203-220, Jul. 1993.

21. E. Langbehn, G. Bruder and F. Steinicke, "Subliminal reorientation and repositioning in virtual reality during eye blinks", Proc. Symp. Spatial User Interact. (SUI), pp. 213, 2016.

22. E. Langbehn, P. Lubos, G. Bruder and F. Steinicke, "Application of redirected walking in room-scale VR", Proc. IEEE Virtual Reality, pp. 449-450, Mar. 2017.

23. E. Langbehn, F. Steinicke, M. Lappe, G. F. Welch and G. Bruder, "In the blink of an eye: Leveraging blink-induced suppression for imperceptible position and orientation redirection in virtual reality", ACM Trans. Graph., vol. 37, no. 4, pp. 1-11, Jul. 2018.

24. J. J. LaViola, "A discussion of cybersickness in virtual environments", ACM SIGCHI Bull., vol. 32, no. 1, pp. 47-56, Jan. 2000.

25. M. B. Brown and A. B. Forsythe, "Robust tests for the equality of variances", J. Amer. Stat. Assoc., vol. 69, no. 346, pp. 364-367, 1974.

26. E. Medina, R. Fruland and S. Weghorst, "Virtusphere: Walking in a human size VR ‘hamster ball", Proc. Hum. Factors Ergonom. Soc. Annu. Meeting, vol. 52, pp. 2102-2106, 2008.

27. S. Razzaque, Z. Kohn and M. C. Whitton, "Redirected walking", Proc. Eurographics, vol. 9, pp. 105-106, 2001.

28. A. Nagamori, K. Wakabayashi and M. Ito, "The ball array treadmill: A locomotion interface for virtual worlds", IEEE Virtual Reality, pp. 3-6, 2005.

29. VRWorks—Variable Rate Shading, Nov. 2018, [online] Available: https://developer.nvidia.com/vrworks/graphics/variablerateshading.

30. C. O’Connor, ZeroLight Improves Automotive Product Visualisation Quality and Performance With VRS, Nov. 2018, [online] Available: https://developer.nvidia.com/vrworks/graphics/variablerateshading.

31. J. K. O’Regan, H. Deubel, J. J. Clark and R. A. Rensink, "Picture changes during blinks: Looking without seeing and seeing without looking", Vis. Cognition, vol. 7, no. 1, pp. 191-211, Jan. 2000.

32. A. Patney, J. Kim, M. Salvi, A. Kaplanyan, C. Wyman, N. Benty, et al., "Perceptually-based foveated virtual reality", Proc. ACM SIGGRAPH Emerg. Technol. (SIGGRAPH), pp. 17:1-17:2, 2016.

33. T. C. Peck, H. Fuchs and M. C. Whitton, "An evaluation of navigational ability comparing redirected free exploration with distractors to walking-in-place and joystick locomotio interfaces", Proc. IEEE Virtual Reality Conf., pp. 56-62, Mar. 2011.

34. C. Poullis and S. You, "Automatic creation of massive virtual cities", Proc. IEEE Virtual Reality Conf., pp. 199-202, Mar. 2009.

35. D. Ramot, Average Duration of a Single Blink, Nov. 2019, [online] Available: https://bionumbers.hms.harvard.edu/bionumber.aspx?id=100706&ver=0.

36. S. Razzaque, Z. Kohn and M. C. Whitton, "Redirected walking", Proc. Eurographics, vol. 9, pp. 105-106, 2001.

37. S. Razzaque, Z. Kohn and M. C. Whitton, Redirected Walking, Chapel Hill, NC, USA:Univ. of North Carolina at Chapel Hill, 2005.

38. S. Razzaque, D. Swapp, M. Slater, M. C. Whitton and A. Steed, "Redirected walking in place", Proc. Eurograph. Symp. Virtual Environ., pp. 123-130, 2002.

39. S. M. Reder, "On-line monitoring of eye-position signals in contingent and noncontingent paradigms", Behav. Res. Methods Instrum., vol. 5, no. 2, pp. 218-228, Mar. 1973.

40. R. A. Rensink, "Change detection", Annu. Rev. Psychol., vol. 53, no. 1, pp. 245-277, 2002.

41. R. A. Rensink, J. K. O’Regan and J. J. Clark, "To see or not to see: The need for attention to perceive changes in scenes", Psychol. Sci., vol. 8, no. 5, pp. 368-373, May 2016.

42. R. Ruddle and S. Lessels, "The benefits of using a walking interface to navigate virtual environments", ACM Trans. Comput.-Hum. Interact., vol. 16, pp. 5:1-5:18, Apr. 2009.

43. R. A. Ruddle, E. Volkova and H. H. Bülthoff, "Walking improves your cognitive map in environments that are large-scale and large in extent", ACM Trans. Comput.-Hum. Interact., vol. 18, no. 2, pp. 1-20, Jun. 2011.

44. D. J. Simons and C. F. Chabris, "Gorillas in our midst: Sustained inattentional blindness for dynamic events", Perception, vol. 28, no. 9, pp. 1059-1074, Sep. 1999.

45. J. L. Souman, P. R. Giordano, I. Frissen, A. D. Luca and M. O. Ernst, "Making virtual walking real: Perceptual evaluation of a new treadmill control algorithm", ACM Trans. Appl. Perception, vol. 7, no. 2, pp. 1-14, Feb. 2010.

46. F. Steinicke, G. Bruder, L. Kohli, J. Jerald and K. Hinrichs, "Taxonomy and implementation of redirection techniques for ubiquitous passive haptic feedback", Proc. Int. Conf. Cyberworlds, pp. 217-223, Sep. 2008.

47. M. Stengel, S. Grogorick, M. Eisemann and M. Magnor, "Adaptive image-space sampling for gaze-contingent real-time rendering", Comput. Graph. Forum, vol. 35, no. 4, pp. 129-139, Jul. 2016.

48. E. A. Suma, S. Clark, D. Krum, S. Finkelstein, M. Bolas and Z. Warte, "Leveraging change blindness for redirection in virtual environments", Proc. IEEE Virtual Reality Conf., pp. 159-166, Mar. 2011.

49. E. A. Suma, Z. Lipps, S. Finkelstein, D. M. Krum and M. Bolas, "Impossible spaces: Maximizing natural walking in virtual environments with self-overlapping architecture", IEEE Trans. Vis. Comput. Graphics, vol. 18, no. 4, pp. 555-564, Apr. 2012.

50. Q. Sun, A. Kaufman, A. Patney, L.-Y. Wei, O. Shapira, J. Lu, et al., "Towards virtual reality infinite walking: Dynamic saccadic redirection", ACM Trans. Graph., vol. 37, no. 4, pp. 1-13, Jul. 2018.

51. Q. Sun, L.-Y. Wei and A. Kaufman, "Mapping virtual and physical reality", ACM Trans. Graph., vol. 35, no. 4, pp. 1-12, Jul. 2016.

52. M. Usoh, K. Arthur, M. C. Whitton, R. Bastos, A. Steed, M. Slater, et al., "Walking > walking-in-place > flying in virtual environments", Proc. 26th Annu. Conf. Comput. Graph. Interact. Techn. (SIGGRAPH), pp. 359-364, 1999.

53. F. C. Volkmann, "Human visual suppression", Vis. Res., vol. 26, no. 9, pp. 1401-1416, 1986.

54. F. Volkmann, L. Riggs and R. Moore, "Eyeblinks and visual suppression", Science, vol. 207, no. 4433, pp. 900-902, Feb. 1980.

55. B. Walther-Franks, D. Wenig, J. Smeddinck and R. Malaka, "Suspended walking: A physical locomotion interface for virtual reality", Proc. Int. Conf. Entertainment Comput., pp. 185-188, 2013.

56. B. Williams, G. Narasimham, B. Rump, T. P. McNamara, T. H. Carr, J. Rieser, et al., "Exploring large virtual environments with an HMD when physical space is limited", Proc. 4th Symp. Appl. Perception Graph. Vis. (APGV), pp. 41-48, 2007.

57. M. Zank and A. Kunz, "Using locomotion models for estimating walking targets in immersive virtual environments", Proc. Int. Conf. Cyberworlds (CW), pp. 229-236, Oct. 2015.

58. M. Zank and A. Kunz, "Eye tracking for locomotion prediction in redirected walking", Proc. IEEE Symp. 3D User Interfaces (DUI), pp. 49-58, Mar. 2016.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top