Login | Register

Feature interactions detection in intelligent networks


Feature interactions detection in intelligent networks

Sefidcon, Azimeh (1999) Feature interactions detection in intelligent networks. Masters thesis, Concordia University.

[thumbnail of MQ47832.pdf]
Text (application/pdf)


Intelligent Networks (IN) have been introduced for rapid development and deployment of new services. However, these new services may interact with old ones in a negative and unexpected manner. This is known as feature interaction (FI) problem. In this thesis, a new pragmatic approach for feature interaction detection is proposed. A pragmatic method for FI detection is based on the gained experience from the study of the known FIs. In this approach, the causes of FIs given in Bellcore and European benchmarks serve as the starting point. The sufficient information for feature description is derived from these causes. This information is modelled using an object-oriented template. Features are described in terms of necessary resources and actions. Feature participants call model, their triggering constraints and operations describe the behaviour of the feature. The detection method takes these models as input and checks for interactions between features. The method consists of three parts: filtering algorithm, feature instantiation and detection algorithm. Using the filtering algorithm, all the possible interaction-prone scenarios are produced and the actual features are instantiated using the list of topologically different call combinations. The detection algorithm is run on these actual participants of the features in order to detect potential interactions. The approach has been implemented as a tool and applied successfully to the existing feature interaction benchmarks.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Thesis (Masters)
Authors:Sefidcon, Azimeh
Pagination:xv, 149 leaves : ill. ; 29 cm.
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Electrical and Computer Engineering
Thesis Supervisor(s):Khendek, Ferhat
Identification Number:TK 5105.5 S38 1999
ID Code:987
Deposited By: Concordia University Library
Deposited On:27 Aug 2009 17:15
Last Modified:13 Jul 2020 19:48
Related URLs:
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top